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248 S. CANTAT

4. Invariance de la fibration de Tits

4.1 La fibration de Tits

Pour étudier les endomorphismes d'une variété complexe compacte,
l'existence de fibrations invariantes est un atout crucial. Nous avons déjà
signalé les fibrations d'Albanese et pluricanoniques dans la partie 2. Le troisième

exemple est fourni par le processus de réduction algébrique. Il donne naissance
à une fibration dont les fibres sont les sous-variétés sur lesquelles toute fonction

méromorphe est constante. Tout endomorphisme préserve cette fibration;
l'action induite sur la base correspond à celle de l'endomorphisme / par
composition sur le corps des fonctions méromorphes. Dans le cas général, il s'agit
d'une fibration méromorphe (voir [28]) mais pour les variétés homogènes, on

dispose du théorème suivant ([1], theorème 6.2):

THÉORÈME 4.1. Soit X une variété homogène compacte. Il existe une

variété homogène projective Y et une fibration localement triviale p: X —>• Y

telle que :

(i) Les fibres de p sont parallélisables,

(ii) p réalise un isomorphisme entre le corps des fonctions méromorphes
de X et celui de Y,

(iii) tout endomorphisme de X permute les fibres de p.

D'après le théorème de Borel et Remmert, Y est le produit d'une variété

abélienne par une variété de drapeaux. Une façon de définir la fibration de

Tits est de composer la fibration précédente avec la projection de sa base sur
la variété de drapeaux. Le théorème précédent et la proposition 3.3 montrent
ainsi que la fibration de Tits est invariante par tout endomorphisme.

PROPOSITION 4.2. La fibration de Tits d'une variété homogène compacte
est invariante par tout endomorphisme.

Pour obtenir ce résultat, nous avons employé une définition quelque peu
inhabituelle de la fibration de Tits. Voici la construction initiale de Jacques

Tits. Soit X — GjH une variété homogène compacte, avec H un sous-groupe
fermé du groupe de Lie complexe G. Notons la composante connexe de

l'élément neutre dans H et N le normalisateur de H°. On peut montrer que

G/N est une variété de drapeaux. On obtient ainsi une fibration de X sur

une variété de drapeaux Q qui s'avère être la fibration de Tits; en particulier,
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cette construction ne dépend pas de l'écriture de X sous la forme G/H. Les

fibres sont isomorphes au quotient du groupe de Lie complexe L N/H°

par le sous-groupe discret cocompact T H/H° ; ce sont donc des variétés

parallélisables connexes. Nous renvoyons le lecteur à [9], [27], [15] et [2]

pour les démonstrations de ces résultats.

Vocabulaire. Si X est une variété homogène compacte, les fibres et la

base de la fibration de Tits de X seront appelées fibres de Tits et base de Tits

de X.

4.2 Première application

Soit Q la base et F la fibre de la fibration de Tits d'une variété homogène

compacte X. Si / est un endomorphisme de X, il induit un endomorphisme

/ de la variété de drapeaux Q. Nous pouvons donc appliquer le théorème

de Paranjape et Srinivas. S'il apparaît un facteur Q Qo x Q\ sur lequel

f induit un automorphisme f0: Qo -L Qo, la dynamique de / s'appauvrit
considérablement: /0 est induite par une transformation linéaire isotope à

l'identité.
Afin de démontrer le théorème 1.1, nous pourrons donc supposer que la

base Q de la fibration de Tits est un produit d'espaces projectifs :

(11) Q Pmi x ••• xPmÈ ke N,

et que / agit diagonalement : / (fu Jk) où /• 6 End(PmQ.

Soit q un point de Q et PqJ l'espace projectif qui passe par q et est donné

par le jème facteur du produit (11). L'image réciproque de la fibration de Tits

par l'injection P^ -A Q ne dépend pas de q car X est homogène. On obtient
ainsi une variété homogène Xj dont la fibration de Tits a des fibres isomorphes
à celles de X et une base isomorphe à Pmj. Puisque tout endomorphisme d'un

espace projectif admet des points fixes, / induit un endomorphisme de Xj.
Nous étudierons donc d'abord les endomorphismes des variétés homogènes
dont la base de Tits est un espace projectif.

5. Quelques exemples

Présentons maintenant quelques exemples qui illustrent l'invariance de la
fibration de Tits et donnent une petite idée des phénomènes qui peuvent
apparaître lorsque la variété homogène n'est pas kâhlérienne.
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