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ATIYAH’S I2-INDEX THEOREM

by Indira CHATTERJI and Guido MISLIN

1. INTRODUCTION

The L2-Index Theorem of Atiyah [1] expresses the index of an elliptic
operator on a closed manifold M in terms of the G-equivariant index of some
regular covering M of M, with G the group of covering transformations.
Atiyah’s proof is analytic in nature. Our proof is algebraic and involves an
embedding of a given group into an acyclic one, together with naturality
properties of the indices.

2. REVIEW OF THE L?-INDEX THEOREM

The main reference for this section is Atiyah’s paper [1]. All manifolds
considered are smooth Riemannian, without boundary. Covering spaces of
manifolds carry the induced smooth and Riemannian structure. Let M be a
closed manifold and let E, F denote two complex (Hermitian) vector bundles
over M. Consider an elliptic pseudo-differential operator

D: C®(M,E) — C°(M, F)

acting on the smooth sections of the vector bundles. One defines its space of
solutions

Sp={s€ C*°(M,E)| Ds =0} .

The complex vector space Sp has finite dimension (see [13]), and so has Sp-
the space of solutions of the adjoint D* of D where

D*: C®°(M, F) — C>(M, E)
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is the unique continuous linear map satisfying
(Ds,s") :/ (Ds(m),s'(m)), dm = (s,D*s") :/ (s(m), D*s'(m)) ; dm
M M

for all s € C*°(M,E), s’ € C®°(M,F). One now defines the index of D as
follows :

Index(D) = dim¢(Sp) — dimc(Sp+) € Z.

An explicit formula for Index(D) is given by the famous Atiyah-Singer
Theorem (cf. [2]). Consider a not necessarily connected, regular covering
7: M — M with countable covering transformation group G. The projection
7 can be used to define an elliptic operator

D :=7*(D): C*(M,7*E) — C®(M,n*F).

Denote by S the closure of {s € CSO(M, T*E) | Ds = O} in L2(1\71, T*E). Let

D" denote the adjoint of D. The space Sz 1s not necessarily finite dimensional,
but being a closed G-invariant subspace of the L?-completion L2(M,7*E) of
the space of smooth sections with compact supports CSO(Z\NI ,m*E), its von
Neumann dimension is therefore defined as follows. Write

N(G) = {P: £*(G) — £*(G) bounded and G-invariant }

for the group von Neumann algebra of G, where G acts on ¢*(G) via the
right regular representation. Then S5 is a finitely generated Hilbert G-module
and hence can be represented by an idempotent matrix P = (p;;) € M,(N(G))
(recall that a finitely generated Hilbert G-module is isometrically G-iso-
morphic to a Hilbert G-subspace of the Hilbert space ¢*(G)" for some n > 1,
see [9]). One then sets

n

dimg(S) = Y _ (pi(e),e) = (P) € R,

i=1

where by abuse of notation e denotes the element in ¢*(G) taking value
1 on the neutral element e € G and O elsewhere (see Eckmann’s survey
[9] on L?-cohomology for more on von Neumann dimensions). The map
%: M,(N(G)) — C is the Kaplansky trace. One defines the L?-index of D by

Indexg(D) = dimg(S5) — dimg(S5+) -

We can now state Atiyah’s L?-Index Theorem.

{
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THEOREM 2.1 (Atiyah [1]). For D an elliptic pseudo-differential operator
on a closed Riemannian manifold M

Index(D) = Indexg(D)

for any countable group G and any lift D of D to a regular G-cover M
of M.

In particular, the L?-index of D is always an integer, even though it is a
priori given in terms of real numbers. The following serves as an illustration
of the L?-Index Theorem.

EXAMPLE 2.2 (Atiyah’s formula [1]). Let Q° be the de Rham complex of
complex valued differential forms on the closed connected manifold M and

consider the de Rham differential D = d + d*: Q% — Q% Let m: M — M
be the universal cover of M so that G = m(M). Then

e Index(D) = x(M), the ordinary Euler characteristic of M.

e Indexg(D) =3 j(—l)/Bf(M), the L?-Euler characteristic of M.
The #(M)’s denote the L?-Betti numbers of M. Thus the L?-Index Theorem
translates into Atiyah’s formula

XM) =Y (~1YgM).

j
We recall that the L?-Betti numbers (3(M) are in general not integers. For

instance, if (M) is a finite group, one checks that

F(M) = b(M),

|1 (M)

\lhere b/(M) stands for the ordinary j’th Betti number of the universal cover
M of M. In particular, for 1 < |m(M)| < oo, BO%M) = 1/|m(M)| is not an
integer and the L?-Index Theorem reduces to the well-known fact that

x(M)
| (M)|

XM) =

It is a conjecture (Atiyah Conjecture) that for a general closed connected
manifold M the L?-Betti numbers B(M) are always rational numbers, and
even integers in case that 7; (M) is torsion-free. For some interesting examples,
which might lead to counterexamples, see Dicks and Schick [8].
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