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k+1 k+1

(1.1) Sta =30, r=12,... kk+2
i=l i=1

by applying a theorem of Gloden [2, p.24]. Applying this procedure to the
non-symmetric ideal solutions of degrees four and five obtained in this paper,
we get parametric solutions of (1.1) when k=4 or k=15.

2. IDEAL NON-SYMMETRIC SOLUTIONS
OF THE TARRY-ESCOTT PROBLEM OF DEGREE FOUR

To obtain ideal non-symmetric solutions of the Tarry-Escott problem of
degree four, we have to obtain a solution of the system of equations

5 5
(2.1) doap=) b, r=1234
i=1 i=1

We first observe that the system of equations

(2.2) X|+X 4+ X =Y+ +Y;, r=1,24,
reduces to
(2.3) X} 4+ XX+ X3 = Y2+ VY, + Y2,

if we take X3 = —X; — X, and Y5 = —Y; — Y,. A solution of (2.3) in terms
of arbitrary parameters m, n, x, y, is given by

Xi=m+2nx+ (—m+n)y,
X, = (—2m — n)x + (—m — 2n)y,
Y1 = (m —n)x+ (—m — 2n)y,

Y =(-2m—nx+ (—m+n)y,

(2.4)

and we now get

X3 =(m—n)x+ 2m+ n)y,

(2.5)
‘ Y =(m+2n)x+ 2m+n)y.

It follows from this solution of the system of equations (2.2) that if we take
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a; = (my + 2n)x; + (—my + n)y1,

ay = (=2my — ny)x; + (—my — 2n1)y1,
as = (my — n)x; + Cmy + ny)yy,

as = (my + 2np)xp + Cmy + n2)y2

as = (—2my — ny)xy + (—my + n2)y2 ,

ag = (my — np)xp + (—my — 2ny)ys

(2.6)
by = (my + 2n)xz + (—my + n2)y2,
by = (—2my — ny)xy + (—mp — 2mp)ys,
by = (my — m)xz + (2my + na)ys2,
by = (my — ny)x; + (—my — 2ny)yy,
bs = (=2my — ny)x; + (—my + )y,
be = (my + 2n)x1 + 2my + nyys,
then

6 6
27) Sa=%#,
i=1 i=1

is identically satisfied for »r = 1,2 and 4. Therefore, to obtain a solution of

(2.1), we only have to choose m;, n;, x;, y;, such that (2.7) also holds for

r = 3 and, at the same time, the additional condition ag = bg is satisfied.
When r =3, (2.7) reduces to the equation

(2.8) miny(my + npxiyi1(x + y1) = mana(mg + ng)xaya(x2 + y2)
which is to be solved together with the additional condition

(2.9) (my — np)xy + (—my — 2ma)y2 = (my + 2ny)x) + (2my + ny)y:
To solve the simultaneous equations (2.8) and (2.9), we write

(2.10) mp =1tmy, np=1M, X1=pXp, Y=gy,

when (2.8) is readily solved to get

(2.11) X=pg —r, y=-pq+1.

Next, we find x;, y; from (2.10), then solve (2.9) for my,n; to get
(2.12) my =pq—2pt+1>, n =pqg+pt—27,

and then (2.10) gives

(2.13) my = tpg — 2pt +12), ny = tpq + pt — 21%).
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We now substitute the values of my, ny, my, ny, x1, x2, y1, y2 in (2.6) to get
the following non-symmetric solution of the Tarry-Escott problem of degree
four:
ay =p°q’ —p’q’t — p’q’ + pqt* +pf — g’
ay =p°q't—p° g +pigr — p*t* — pgt + gt
a3 = —p°q’ + p° ¢t + p*t* + pg’t’ — pgt* — pr°
ay = —pq’t+p’qt’ + p*q’t — pg’t —pt° +1°,
as = —p>qt® — p’qt+ p*q’t + pqr’ + pgt* — 1,
by = —p’q* + p’qt + p’qr* — pg’t — pqt* + pt°
y = PP — PP+ PP — gl — i+ 15,
bs = —p’q’t+p’qt’ — p*q’" + pg’t +pgt’ —1°,
bi=pq —p’q’t+p*t* — pg’t —pr’ + gt

bs = —p°q’ + p*¢*t* + p*qt® — p*t* + pgt* — gt .

(2.14)

While this solution is in terms of polynomials of degree six in three
parameters, it yields simpler solutions in terms of polynomials of degree three
if we consider g and ¢ as constants. For example, taking g =1, = —1, we
get the following ideal non-symmetric solution of the Tarry-Escott problem
of degree four:

a1 =2p+p +1, by=-p —2p*—p,
a=-p =3p*+p—1, by=-p +3p°+p+1,
(2.15) a3 = —p’ +2p* —p, by =2p° —p*—1,
ay=2p"—p*+2p+1, by=2p+p*+2p—1,
as=-p +p°+p—1, bs=-p —p +p+1.

In this solution we may take p as a rational parameter. Integer solutions of
(2.1) are obtained by multiplying any rational numerical solution by a suitable
constant. Substituting p = —2 in the above solution, we get, after suitable
re-arrangement, the following numerical solution:

(=23 + (=11 + (=" 4+ 9 + 18 = (21 + (=17 +2"+3"+ 19"

where r = 1,2,3,4. Adding the constant 24 to all the terms, we get the
following solution in positive integers:

1"+ 13"+ 17" +33" +42" =3"4+ 7 + 26"+ 27 + 43",
where r =1,2,3,4.
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We may apply the theorem of Gloden [2, p.24] to the three-parameter ideal
non-symmetric solution obtained above to derive a solution of the system of
equations

5 5
(2.16) Soar=>b, r=1,2346,
i=1 i=1

in terms of polynomials of degree six in three parameters. We, however, restrict
ourselves to applying this theorem to the simpler solution (2.15), and obtain
the following solution of the system of equations (2.16):

ay =9p° +5p* —3p+5, by = —6p> — 10p* — 8p,

a = —6p> — 15 +2p—5, by=—6p>+15p°+2p+5,
(2.17) az = —6p° + 10p* — 8p, by = 9p® — Sp* —3p -5,

ar=9p> —5p* +7Tp+5, by =9p° +5p* +Tp -5,

as = —6p> +5p* +2p — 5, bs = —6p> —5p* +2p+5.
When p = -2, this leads to the following solution of the system of

equations (2.16):
(—101) + (=41 + (=21)" +59" + 104" = (—91)" + (=71)" + 24"+ 29" + 109"

where r =1,2,3,4,6.

We note that additional parametric non-symmetric solutions of the Tarry-
Escott problem of degree four may be obtained by taking a;, b;, as in (2.6),
and instead of imposing the condition ag = bg, we reduce one term on either
side by solving (2.8) together with another condition such as a4 = bg or
as = bg. Solutions obtained in this manner are of degrees 6,7 or 8 in terms
of three parameters.

3. IDEAL NON-SYMMETRIC SOLUTIONS
OF THE TARRY-ESCOTT PROBLEM OF DEGREE FIVE

To obtain ideal non-symmetric solutions of the Tarry-Escott problem of
degree five, we have to obtain a solution of the system of equations

6 6
(3.1) dar=> b, r=1,234,5.
i=1 i=1
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