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118 S. ELIAHOU AND M. KERVAIRE

THEOREM 2. Let r—1 = Y o ap and s—1 = Y..5,bip' be the
respective p-adic expansions of r —1 and s — 1, with 0 < a;,b; < p —1
for all i.

Define the integer k as the largest index for which ay + by > p, if any
exists. Otherwise, that is if a;+b; <p—1 for all i >0, set k= —1.

Then, (,(r,s) is determined by

r—1 s—1
o weom (LR )

Although the point of Plagne’s paper is to stress the relationship of his
formula with Additive Number Theory, it is interesting to note that (1) also
admits a direct proof using the above Theorem 2.

This is the content of the next section. In Section 2, we provide a simple
proof of Theorem 2.

1. DERIVING THEOREM 1 FROM THEOREM 2

It is very easy to understand the relationship of the floor-function |£], or
integral part of &, appearing in Theorem 2, with the ceiling-function [£], the
smallest integer at least as big as ¢, used in formula (1).

The main object of this section will be to locate the minimum over ¢ > 0
of the expression ([ﬁ] + L—fz“ — 1) p° and to show that this minimum is
attained at / = k+ 1 with k as defined in Theorem 2.

For every index ¢ > 0, we have

L+ Y eap _ 1+5 50 -Dp
P’ - p’ N
Since r =1+ .5 ap', it follows that

v .
FAIS Sy

i>0

0< 1.

-1 £—1 ;
.. ~ap _(=Dp' £_
Similarly, we have 0 < Z’;% P < Z‘=°pe = £ pgl <1, and

1 ,
3) [r J — Zai-i-ﬁpl-

;
p i>0
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Applying the same formulas to s, we have [ﬁw == t%} + 1. Hence,
—1

(211 (5 152

for every 4.

It remains to locate the minimum of the expression (L}—Q] + [;—4] - 1) P

as a function of 7.

If a;+b; <p—1 for every i > 0, then (l';)%" + (;ﬂ — 1) pe is a weakly

increasing function of ¢ > 0. Indeed, the equation
r s i
[71 + (—J -1= Z(ai+e + biro)p' +1
p p >0

yields for ¢ < ¢

(el - 0) - (5l 151 -)7

=1+ (@e +bue)p)P" — U+ (e + birop)p’
i>0 i>0

=p* —p' = > (@+b)p =p" —p' = Y p—Dp'=0.

e<i<t! 0<i<t!
;—J _ 1) ot s

attained at £ = 0 and ming>q {(bﬂ + [p%;‘ — 1) pe} = r+s—1, as desired.

If there exists an index k > O such that a;+b;, > p and 0 < a;+b; < p—1
for k < i, then the above calculation shows that (Lﬁ] + [;}%1 — 1)p* is a
weakly increasing function of ¢ for k+1 < /.

On the other hand, for / < k, we have

(el -0 ([ + ] 1)

=p' =P+ Y @ bp 2 pt - P P =pf > 0.
0<i<k

Thus, in the case where k = —1, the minimum of ([}7%1 + [

Therefore, even though the function (L&w + L&] — l) p’ need not be

monotonously decreasing in the interval 0 < £ < k, and it actually is not in
general, it still does take its minimum at £ =k+ 1.
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Consequently, in both cases k = —1 and k > 0, we have

([ + |5 )7 = ([ ] [ ] 1)

Now, Theorem 2 tells us that

—1 —1
(5 2] )=

and Theorem 1 follows.

2. PROOF OF THEOREM 2

As noted in equation (3) of Section 1, L”,ZFIIJ = Zizk L1 a;pi =D

Similarly, | $5h| = 04, bir .
By definition of k, we have a; +b; < p —1 for i > k+ 1 and thus the
right hand side of the equation

r—1 s—1 .
[pk+1J i [pk+1J B Z (a; + by) p' =+

i>k+1

S|

is the p-adic expansion of the left hand side.
For the purpose of the proof of Theorem 2, set

-1 —1
@ w= (|5 |+ S ) o = @

i>k+1

We proceed to show that w + p**! is the smallest integer n such that
(x+y)" belongs to the ideal (x",y") = x"F,[x,y]+y’F,[x,y] in the polynomial
ring F,[x,y]. That is w + p*! = B,(r, s).

We first calculate (x 4+ y)* in the quotient algebra of Fp[x y] modulo
(x",¥*). We have from (4)

i2k+1 ¢;=0
We claim that

i i\ _api by i+ Di\ 4w
(5) (x+y)’wE H (a+ )xalpybzp — H (Cl+ )xuy 7

a a
i>k+1 ! i>k+1 !

i

modulo (¥",y), where u =35, ap’ and v =735, b
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