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a distinguished, equivariant pseudo-line bundle (Ej,s;) (where Ej is trivial),
with connection V% induced from the connection 6;. From the definition
of 6, it follows that the equivariant error 2-form for this connection is the
pull-back of the equivariant symplectic form on the coadjoint orbit through
K= Hi-

We now modify the bundle gerbe connection by adding the equivariant
2-form (wj)g € QZ‘;(Vj) to the gerbe connection. Proposition 5.2(d) shows that
the equivariant error 2-form of V% with respect to the new gerbe connection
vanishes. The other conditions from the gluing construction in §4 are trivially
satisfied. Since the equivariant 3-curvature for the new gerbe connection on
G; 18 dg(wj)g = 77G|vj> we have constructed an equivariant bundle gerbe with
connection, with equivariant curvature-form 7.

REMARK 5.6. For G = SU(d + 1) this construction reduces to the
construction in terms of transition line bundles: All L;, #;, Ej;, u, are trivial
in this case, hence the entire information on the gerbe resides in the functions
si: (X — U(1) defined by the differences ; — p;. The condition &s; = 1
for these functions means that s; defines a line bundle L; over Vj, as
remarked at the beginning of Section 2.2. The condition s;sjsi; = 1 over Xy
1s the compatibility condition over triple intersections.

6. PRE-QUANTIZATION OF CONJUGACY CLASSES

It is a well-known fact from symplectic geometry that a coadjoint orbit
O = G.p through p € £ has integral symplectic form, i.e. admits a pre-
quantum line bundle, if and only if 1 is in the weight lattice A*. The analogous
question for conjugacy classes reads: For which © € 2 and m € N does the
pull-back of the mth power of the basic gerbe G" to the conjugacy class
C = G.exp(p) admit a pseudo-line bundle, with mw, as its error 2-form ?
For any positive integer m > 0 let

A, = AN NmA

be the set of level m weights. As is well-known [26], the set A’ parametrizes
the positive energy representations of the loop group LG at level m.

THEOREM 6.1. The restriction of G™ to a conjugacy class C admits a
pseudo-line bundle L with connection, with error 2-form mwc, if and only
if C=G.exp(u/m) with € A},. Moreover L has an equivariant extension
in this case, with mwc as its equivariant error 2-form .
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Proof. Given a conjugacy class C C G, let u € m2( be the unique point
with g :=exp(u/m) € C, and let K = G, so that C = G/K. Pick an index j
with C C V;, and let

v =m¥(g) = p— my;.
Then
G, CKCG,.

Let 0,,0, C g denote the adjoint orbits of p, v, and (w,)g, (W,)c their
equivariant symplectic forms. The pull-back (;G™ is the gerbe over G/K
defined as in Section 3 by the homomorphism p € Hom(m(K), U(1)), given
as a composition

m(K) — m(G;) — U(l),

where the fist map is push-forward under the inclusion K < G;, and the
second map is the homomorphism defined by the element my; € t for G;.

Suppose now that p € Aj,. Then my; equals —v up to a weight lattice
vector, which means that o is the image of —v € (¢*)X in the exact sequence
(3.2). Hence, Proposition 3.2 says that we we obtain an equivariant pseudo-line
bundle for (;G™, with equivariant error 2-form

¥ (w)e —mip(wj)g = muwc .

Here we have used part (b) of Proposition 5.2.

Conversely, suppose that G™|cz admits a pseudo-line bundle with error
2-form mwe. Consider the pull-back of ¢ under the exponential map
exp: g — G. The pull-back exp*n € Q3(g) is exact, and the homotopy
operator for the linear retraction of g to the origin defines a 2-form @ € ¥(g)
with dw = exp® 7. As in Proposition 5.2, one shows that for any adjoint
orbit O C g, with expO =C,

LyTo = exXp’ we — wo

where we is the symplectic form on . In particular this applies to
O = O,,/m. Choose a pseudo-line bundle for exp® G with error 2-form —w.
We then have two pseudo-line bundles for exp* G™|» obtained by restricting
the mth power of the pseudo-line bundle for exp®G or by pulling back
the pseudo-line bundle for C. Their quotient is a line bundle over O, with
curvature the difference of the error 2-forms:

m(exp* we — /,"(‘9“ w) = Mwo .

Thus m(u/m) = p must be in the weight lattice.
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REMARK 6.2. Z. Shahbazi has proved that if G is a gerbe with connection
over a manifold M, with curvature 3-form 7n, and ®: N — M is a map with
®*n 4+ dw = 0, then the pull-back gerbe ®*G admits a pseudo-line bundle,
with w as its error 2-form, if and only if the pair (n,w) defines an integral
element of the relative de Rham cohomology H°(®,R). This means that for
any smooth 2-cycle S C N, and any smooth 3-chain B C M with boundary
®(S), one must have [,7 — [ cw € Z. The particular case where the target
of ®@ is a Lie group G is relevant for the pre-quantization of group-valued
moment maps [1].

APPENDIX A. PROOF OF LEMMA 4.4

In this Appendix we prove Lemma 4.4, concerning the construction of a
certain cover U; of M from a given cover V;. Write M = [[,A; where

Ar=1vAlUv

‘Notice that A; C | sc1Ar. By induction on the cardinality k& = |I| we will
construct open sets U; C V;, having the following properties :

(a) the closure U; does not meet U; for |J| < |I| unless J C I,

(b) each A; is contained in the union of U; with J C I.

The induction starts at k = 0, taking Uz = . Suppose we have

constructed open sets U; with U; C V; for |I]| < k, such that the properties
(a), (b) hold for all |I| < k. For |I| = k consider the subsets

B; ::A1\< U UJ)

JCIL)J|<k

Note that (unlike A;) the set By is closed. B; does not meet A; unless I C J,
and it also does not meet U; for |J| < k unless J C I. That is, B; is disjoint

from |
C] = U UJ U U AK .
JELI|T|<k KPI

Choose open sets U; for |I| = k with By C Uy C U; C M\Cy, and such
that the closures of the sets U; for distinct I with |I| = k are disjoint. The
new collection of subsets will satisfy the properties (a), (b) for 1| < k. We
next show that Vi = M\ J,5 Uy is a cover of M. Write M = [, D; with
D; = U’\UIJ|<|1| Uy. Then D;NU; = @ unless I C J, so D; is contained




	6. Pre-quantization of conjugacy classes

