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232 S. CANTAT

Note des Éditeurs

L'article qui précède a été rédigé en 1976 et a circulé sous la forme d'une
prépublication de SUNY, dès 1977. Nous l'avons imprimé ici en l'état, à

l'exception de la dernière remarque du §4, de l'adjonction de trois références

et de la correction d'un petit nombre de fautes de frappe. Serge Cantat, que
nous remercions, a bien voulu rédiger à cette occasion un court texte pour
orienter le lecteur vers quelques-uns des nombreux travaux influencés par
l'article de Mikhaïl Gromov.

NOTES SUR L'ARTICLE DE M. GROMOV

par Serge CANTAT

0.1. L'article de M. Gromov a considérablement influencé les travaux sur
la conjecture de Shub (reliant entropie topologique et action sur l'homologie)
ainsi que l'étude des systèmes dynamiques holomorphes, notamment en ce

qui concerne la dynamique à plusieurs variables.

Le texte [14] propose une preuve alternative des résultats principaux obtenus

par M. Gromov. Ceux de Shmuel Friedland ([6], [7] et [8]) proposent diverses

extensions de ces résultats au cadre des transformations méromorphes des

variétés kâhlériennes (voir [5]).
Les deux pages qui suivent ne concernent que la dynamique holomorphe.

Il convient toutefois de noter les articles suivants, qui sont liés à d'autres

aspects de l'article de Gromov et contiennent de nombreuses références: [15]
et plus généralement l'ensemble des travaux de S. Newhouse sur le sujet, ainsi

que [1], qui s'inscrit dans la lignée des travaux d'Artin et Mazur, de Gromov
et de Yomdin.

0.2. Bien souvent, on couple les résultats obtenus par M. Gromov à ceux
de Y. Yomdin (voir [10], [19]) et de S. Newhouse (voir [15]). Le théorème

suivant est un exemple typique.
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THÉORÈME 0.1 (Gromov, Yomdin). Soit M une variété complexe compacte

kâhlérienne et f: M -Hh M une transformation holomorphe de M. Si X(f)
désigne le rayon spectral de Vaction de f sur la cohomologie de M, alors

h(f) — log(A(/)).

Remarque 1. Lorsque M est l'espace projectif FM, la transformation /
est donné par m + 1 polynômes homogènes de même degré d. L' action de

/ sur chaque groupe de cohomologie Hk(M, Z) est la multiplication par dk.

Le rayon spectral X(f) est donc égal au degré topologique deg(/) — cf1 et

h(f) log(deg(/)).

Remarque 2. Le théorème précédent peut être affiné : comme le montre

l'article de M. Gromov, il suffit de regarder l'action de / sur les classes

de Kahler de M, donc sur les groupes de cohomologie Hk,k(M, R). En

particulier, seule compte la cohomologie de dimension paire pour évaluer

À(/). De manière analogue, les variétés stables et instables locales de /
sont des sous-variétés complexes de M ; si l'on peut associer une classe

d'homologie asymptotique à une variété instable, celle-ci vit dans un groupe
du type H^(M,R) (voir [16], [18]).

Ce point de vue est largement utilisé dans [2], dans [4] et [13], ainsi que
dans [3] et [11]. Il apparaît aussi dans [6], mais le lemme 3 de cet article est

illusoire ; cependant, T. C. Dinh et N. Sibony ont trouvé récemment comment

adapter les arguments de M. Gromov dans le contexte des transformations

méromorphes des variétés kâhlériennes (voir [5]).

0.3. Dans [9] et [17], un résultat analogue au théorème 0.1 est démontré

pour les automorphismes polynomiaux du plan affine C2. La démarche est

proche de celle présentée par M. Gromov au paragraphe 4 de son article : le
théorème de Bézout y joue un rôle similaire mais il est couplé aux travaux
de A. Katok [12] et à ceux de Y. Yomdin mentionnés plus haut (l'usage du
théorème de Bézout est également au cœur de [3]).

L'énoncé est le suivant. Si g est un automorphisme polynomial du plan,
notons algdeg(g) le maximum des degrés des deux polynômes déterminant

g, le degré d'un monôme xayb étant égal à a + b. La limite

deg(g) lim (algdeg(/)ï)
k-ïooV 7
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existe et est un entier. Contrairement au degré algébrique algdeg(p), ce degré

deg(g) est invariant par conjugaison: dQg(hgh~l) deg(g). Soit H(g) le

taux de croissance exponentiel du nombre de points périodiques de g, alors

h(g) H(g) log(deg(g)).

RÉFÉRENCES

[1] Arnol'd, V.l. Dynamics of complexity of intersections. Bol. Soc. Brasil.
Mat. (N.S.) 21 (1990), 1-10.

[2] Bedford, E., M. Lyubich and J. Smillie. Polynomial diffeomorphisms
of C2. IV. The measure of maximal entropy and laminar currents.
Invent. Math. 112 (1993), 77-125.

[3] Briend, J.-Y. et J. Duval. Deux caractérisations de la mesure d'équilibre
d'un endomorphisme de P^(C). Inst. Hautes Études Sei. Puhl. Math.
93 (2001), 145-159.

[4] Cantat, S. Dynamique des automorphismes des surfaces K3. Acta Math.
187 (2001), 1-57.

[5] Dinh, T.-C. et N. SlBONY. Une borne supérieure pour l'entropie topologique
d'une application rationnelle. Preprint Orsay, mars 2003.

[6] Friedland, S. Entropy of polynomial and rational maps. Ann. of Math.
(2) 133 (1991), 359-368.

[7] Entropy of rational self-maps of projective varieties. In: Dynamical
Systems and Related Topics (Nagoya, 1990), 128-140. Volume 9 of
Adv. Ser. Dynam. Systems, World Sei. Publishing, River Edge (N.J.),
1991.

[8] —— Entropy of algebraic maps. In: Proceedings of the Conference in
Honor of Jean-Pierre Kahane (Orsay, 1993), 215-228. Special Issue,
1995.

[9] Friedland, S. and J. Milnor. Dynamical properties of plane polynomial
automorphisms. Ergodic Theory Dynam. Systems 9 (1989), 67-99.

[10] GROMOV, M. Entropy, homology and semialgebraic geometryt In: Séminaire
Bourbaki, Vol. 1985/86, 225-240. Astérisque 145-146, 1987.

[11] Guedj, V. Dynamics of rational transformations. Manuscrit, 2002.

[12] Katok, A. Lyapunov exponents, entropy and periodic orbits for diffeomor¬
phisms. Inst. Hautes Études Sei. Publ. Math. 51 (1980), 137-173.

[13] McMullen, C.T. Dynamics on K3 surfaces: Salem numbers and Siegel
disks. J. reine angew. Math. 545 (2002), 201-233.

[14] NEWHOUSE, S.E. Entropy and volume. Ergodic Theory Dynam. Systems 8*
(Charles Conley Memorial Issue) (1988), 283-299.

[15] Entropy in smooth dynamical systems. In: Proc. Int. Congr. Math.,
Kyoto/Japan 1990, Vol. II, 1285-1294, 1991.

[16] Ruelle, D. and D. Sullivan. Currents, flows and diffeomorphisms.
Topology 14 (1975), 319-327.



NOTES SUR L'ARTICLE DE M. GROMOV 235

[17] SMILLIE, J. The entropy of polynomial diffeomorphisms of C2. Ergodic
Theory Dynam. Systems JO (1990), 823-827.

[18] Sullivan, D. Cycles for the dynamical study of foliated manifolds and

complex manifolds. Invent. Math. 36 (1976), 225-255.
[19] Yomdin, Y. Volume growth and entropy. Israel J. Math. 57 (1987), 285-

300.

(Reçu le 3 septembre 2003)

Serge Cantat

IRMAR, UMR 6625 du CNRS
Université Rennes I
Campus de Beaulieu, Bât. 22-23
F-35042 Rennes cedex
France
e-mail : cantat@maths.univ-rennes 1 .fr




	NOTES SUR L'ARTICLE DE M. GROMOV
	...


