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232 S. CANTAT

NOTE DES EDITEURS

L’article qui précede a été rédigé en 1976 et a circulé sous la forme d’une
prépublication de SUNY, des 1977. Nous I’avons imprimé ici en I’état, a
I’exception de la derniere remarque du §4, de ’adjonction de trois références
et de la correction d’un petit nombre de fautes de frappe. Serge Cantat, que
nous remercions, a bien voulu rédiger a cette occasion un court texte pour
orienter le lecteur vers quelques-uns des nombreux travaux influencés par
I’article de Mikhail Gromov.

NOTES SUR IARTICLE DE M. GROMOV

par Serge CANTAT

0.1. L’article de M. Gromov a considérablement influencé les travaux sur
la conjecture de Shub (reliant entropie topologique et action sur 1’homologie)
ainsi que 1’étude des systemes dynamiques holomorphes, notamment en ce
qui concerne la dynamique a plusieurs variables.

Le texte [14] propose une preuve alternative des résultats principaux obtenus
par M. Gromov. Ceux de Shmuel Friedland ([6], [7] et [8]) proposent diverses
extensions de ces résultats au cadre des transformations méromorphes des
variétés kahlériennes (voir [5]).

Les deux pages qui suivent ne concernent que la dynamique holomorphe.
Il convient toutefois de noter les articles suivants, qui sont li€és a d’autres
aspects de ’article de Gromov et contiennent de nombreuses références: [15]
et plus généralement 1’ensemble des travaux de S. Newhouse sur le sujet, ainsi
que [1], qui s’inscrit dans la lignée des travaux d’Artin et Mazur, de Gromov
et de Yomdin.

0.2. Bien souvent, on couple les résultats obtenus par M. Gromov a ceux
de Y. Yomdin (voir [10], [19]) et de S. Newhouse (voir [15]). Le théoréme
suivant est un exemple typique.
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THEOREME 0.1 (Gromov, Yomdin). Soit M une variété complexe compacte
kiihlérienne et f: M — M une transformation holomorphe de M. Si A( f)
désigne le rayon spectral de ’action de f sur la cohomologie de M, alors

h(f) = log(A(f)) -

REMARQUE 1. Lorsque M est 1’espace projectif P”, la transformation f
est donné par m + 1 polyndmes homogenes de méme degré d. L’action de
f sur chaque groupe de cohomologie HY(M,Z) est la multiplication par d*.
Le rayon spectral A(f) est donc égal au degré topologique deg(f) = d" et

h(f) = log(deg(f))-

REMARQUE 2. Le théoreme précédent peut étre affiné: comme le montre
Iarticle de M. Gromov, il suffit de regarder 1’action de f sur les classes
de Kahler de M, donc sur les groupes de cohomologie H°*(M,R). En
particulier, seule compte la cohomologie de dimension paire pour €valuer
A(f). De maniere analogue, les variétés stables et instables locales de f
sont des sous-variétés complexes de M ; si 'on peut associer une classe
d’homologie asymptotique a une variété instable, celle-ci vit dans un groupe
du type Hy i (M,R) (voir [16], [18]).

Ce point de vue est largement utilis€é dans [2], dans [4] et [13], ainsi que
dans [3] et [11]. Il apparait aussi dans [6], mais le lemme 3 de cet article est
illusoire; cependant, T. C. Dinh et N. Sibony ont trouvé récemment comment
adapter les arguments de M. Gromov dans le contexte des transformations
méromorphes des variétés kahlériennes (voir [5]).

0.3. Dans [9] et [17], un résultat analogue au théoréme 0.1 est démontré
pour les automorphismes polynomiaux du plan affine C?. La démarche est
proche de celle présentée par M. Gromov au paragraphe 4 de son article: le
théoreme de Bézout y joue un role similaire mais il est couplé aux travaux
de A. Katok [12] et a ceux de Y. Yomdin mentionnés plus haut (I’usage du
théoreme de Bézout est également au coeur de [3]).

L’énoncé est le suivant. Si g est un automorphisme polynomial du plan,
notons algdeg(g) le maximum des degrés des deux polynémes déterminant
g, le degré d’un mondme x*y* étant égal & a + b. La limite

deg(g) = lim (algdeg(g")*)
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existe et est un entier. Contrairement au degré algébrique algdeg(g), ce degré
deg(g) est invariant par conjugaison: deg(hgh~!) = deg(g). Soit H(g) le
taux de croissance exponentiel du nombre de points périodiques de ¢, alors
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