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Thus the new u for 7,4, is even. Since the connectivity diagram for 7,4, in
this case, as shown in Figure 36, has compatible standard and palindrome cuts,
this result for the parity of u is one step in the verification of the induction
hypothesis. Each of the six cases is handled in this same way. We omit the
remaining details and assert that the values of u obtained in each case are
correct with respect to the connection structure. This completes the proof of
Case 2.

Since Cases 1 and 2 encompass all the different possibilities for the
standard and palindrome cuts, this completes the proof of the Oriented Schubert
Theorem. [

we obtain

7. STRONGLY INVERTIBLE LINKS

An oriented knot or link is invertible if it is oriented isotopic to the
link obtained from it by reversing the orientation of each component. We
have seen (Lemma 2) that rational knots and links are invertible. A link
L of two components is said to be strongly invertible if L is ambient
isotopic to itself with the orientation of only one component reversed. In
Figure 37 we illustrate the link L = N([[2],[1],[2]]). This is a strongly
invertible link as is apparent by a 180° vertical rotation. This link is well-
known as the Whitehead link, a link with linking number zero. Note that
since [[2],[1],[2]] has fraction equal to 2+ 1/(1 + 1/2) = 8/3 this link is
non-trivial via the classification of rational knots and links. Note also that
3-3=1+41-8.

N([2], [1], [2]) =W

the Whitehead Link
F(W) =2+1/(1+1/2) = 8/3
3:3=1+1-8

FIGURE 37
The Whitehead link is strongly invertible
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In general we have the following

THEOREM 7. Let L = N(T) be an oriented rational link with associated
tangle fraction F(T) = p/q of parity e/o, with p and q relatively prime
and |p| > |q|. Then L is strongly invertible if and only if ¢ =1+ up with
u an odd integer. It follows that strongly invertible links are all numerators

of rational tangles of the form [[ai], [az], ..., [acl, [a], [acl, . .., [az2], [a1]] for
any integers daj, ..., d, Q..

7

Proof. In T the upper two end arcs close to form one component of L
and the lower two end arcs close to form the other component of L. Let
T' denote the tangle obtained from the oriented tangle T by reversing the
orientation of the component containing the lower two arcs and let N(T') = L'.
(If T" denotes the tangle obtained from the oriented tangle T by reversing
the orientation of the component containing the upper two arcs we have seen
that by a vertical 180° rotation the link N(T") is isotopic to the link N(7").
So, for proving Theorem 7 it suffices to consider only the case above.)

Note that 7 and 7’ are incompatible. Thus to apply Theorem 3 we need
to perform a bottom twist on 7’. Since T and 7’ have the same fraction
p/q, after applying the twist we need to compare the fractions p/g and
p/(p + q). Since g is not congruent to (p + ¢g) modulo 2p, we need to
determine when ¢(p + g) is congruent to 1 modulo 2p. This will happen
exactly when gp+¢*> = 1 +2Kp for some integer K. The last equation is the
same as saying that ¢> = 1 +up with u = 2K —¢ odd, since ¢ is odd. Now it
follows from the Palindrome Theorem for continued fractions that ¢ = 1 4+up
with u odd and p even if and only if the fraction p/q with |p| > |g| has a
palindromic continued fraction expansion with an odd number of terms (the
proof is the same in form as the corresponding argument given in the proof
of Theorem 5). That is, it has a continued fraction in the form

lai,ay,...,4,, Q, 4y, y_1,...,00,041].

It is then easy to see that the corresponding rational link is ambient isotopic
to itself through a vertical 180° rotation. Hence it is strongly invertible. It
follows from this that all strongly invertible rational links are ambient isotopic
to themselves through a 180° rotation just as in the example of the Whitehead
link given above. This completes the proof of the Theorem. [

REMARK 7. Excluding the possibility 7 = [oco], as F(T) = 1/0 does not
have the parity e/o, we may assume ¢ # 0. And since ¢ is odd (in order
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that the rational tangle has two components), the integer u = 2K — g in the
equation ¢> = 1 + up cannot be zero. It follows then that the links of the
type N([2n]), for n € Z, n # 0, with tangle fraction 2n/1 are not invertible
(recall the example'in Figure 30). Note that, for n =0 we have T = [0] and
F(T) = 0/1, and in this case Theorem 7 is confirmed, since 12 =1+ u0,
for any u odd. See Figure 38 for another example of a strongly invertible
link. In this case the link is L = N([[3],[11,[11,[11,[3]]) with F(L) =40/11.

Note that 11> = 1 + 3 - 40, fitting the conclusion of Theorem 7.

L = N({3], [11, [1], (11, [3]])

FIGURE 38

An example of a strongly invertible link
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