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QUADRICS, ORTHOGONAL ACTIONS AND INVOLUTIONS
IN COMPLEX PROJECTIVE SPACES

by LE Diing Trang, José SEADE and Alberto VERJOVSKY ")

0. INTRODUCTION

The purpose of this article is to look at the canonical action of the special
orthogonal group SO(rn+ 1,R) on P{, the complex projective space, in order
to get a better understanding of the geometry and topology of the latter. This
is related with a classical problem, studied by Zariski [Za] and others, of
studying the topology of the complement of an affine algebraic hypersurface
V C C""!, in the particular case when V is a homogeneous quadric with an
isolated singularity at the origin. We actually look at the projectivized situation.
We begin by showing that the complement of a non-singular hyperquadric Q
in P¢ is diffeomorphic to the total space of the tangent bundle of the real
projective n-space P%,

c\Q=T(PR).

For n = 3, this implies that the complement of the nonsingular quadric in Pg
is diffeomorphic to the group P SL(2,C). Then we use the above observation
on the topology of P\ Q to describe P¢ as the double mapping cylinder of
the double fibration

FrH (2, 1)
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where
F1'(2,1) = SO(n +1,R)/(SO(n — 1,R) x Z/2Z)

is the partial flag manifold of oriented 2-planes in R"™!' and non-oriented
lines in these planes. The manifold Fﬁ_+1(2, 1) is diffeomorphic to the unit
sphere normal bundle of Q in P{, and it is also diffeomorphic to the unit
sphere tangent bundle of Py .

V. Vassiliev pointed out to us that this decomposition of P¢ resembles the
one he gave in [Val]. In fact, as we explain at the end of Section 3 below,
in the case n = 2 the above decomposition of P% descends (by complex
conjugation) to a similar decomposition of the 4-sphere. If we denote by
F°(2,1) = F3.(2,1) /(Z/2Z) the flag manifold of non-oriented 2-planes in R’
and non-oriented lines in these planes, then the sphere $* is obtained by taking
the cylinder F°(2,1) x [0, 1] and gluing two copies of P% to its boundary, via
the obvious projections. This is explained (in different words) in Theorem 2 of
[Val], where he uses it to show that the flag manifold F 3(2,1) is the Spanier-
Whitehead dual (in the sense of [SW]) of two disjoint copies of Py. Also, in
the remark at the end of that article, Vassiliev acknowledges an explanation
by S. M. Finashin relating to P% his construction on S*. Thus, in the case
n = 2 our construction is actually hidden in Vassiliev’s article. He explained
to us that his method can also be used in higher dimensions to obtain our
construction for P¢ in general. It is interesting to observe, as pointed out
to us by E. Ghys, that this decomposition of $* actually corresponds to the
Tits building for the symmetric space SL(3,R)/SO(3,R). This quotient can
be regarded as the 5-ball, whose visual sphere at infinity is S*. We refer to
[BGS, Eb] for details on this construction (especially §9 in Appendix 5 of
[BGS]). Our construction for n = 2 is also related with the study done by
C.T.C. Wall in [Wa] about Klein’s formula for real projective plane curves.

In Section 2 we look more carefully at the decomposition of P¢ arising
from the above double fibration. This describes P as a 1-parameter family
of codimension 1 submanifolds F Z’r+1(2, 1) x {t}, for ¢ € (0, 1), together with
two “special” fibres: Q and a copy of the real projective space. We prove that
these are the orbits of the natural action of SO(n+1,R) on P, regarded as a
subgroup of the complex orthogonal group SO(n—+ 1, C). This is an isometric
action, with respect to the Fubini-Study metric on P¢, and the principal orbits
are the flag manifolds F”++1(2, 1), which have codimension 1. So this is an
isometric action on P{ of cohomogeneity 1, thus it is hyperpolar, i.e. there
is an embedded geodesic circle, transversal to all the orbits, by [HPTT]. Here
we exhibit such a circle explicitly and we use it to parametrize the space of
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orbits, which is the interval [0, 5]. The endpoints of this interval correspond
to the two special orbits, which are the quadric Q and the real projective
space I1 which is the fixed point set of the complex conjugation in P¢.
For this, it is convenient to look at two other interesting foliations which
arise naturally from the double fibration (1.4), and from other considerations
too. The first foliation F; is defined on P¢\IT and its leaves are open 2-disks
transversal to Q and transversal to all the SO(n + 1,R)-orbits on P{ \ IT.
To construct this foliation, we let N be the normal map of Q. This map
is defined on the normal bundle of Q in P{ and it is the restriction to this
normal bundle of the exponential map. We show that this map is regular for

normal vectors of length less than 7 and it carries each normal sphere bundle

of Q of radius less than 7 into an SO(n+ 1, R)-orbit. The image under N of
the 2-disks orthogonal to Q are the leaves of the foliation F; on P& \II. The
space Il is the set of focal points of Q, i.e. the image under the exponential
map of the set of critical values of the normal map. The closure of each
leaf of JF; is a closed 2-disk that meets IT orthogonally in a projective line
which is a closed geodesic in P¢. For each pair of conjugate points in Q, the
corresponding leaves are naturally glued together along their common limit
set in Il, forming a complex projective line defined by real coefficients. The
second foliation F, is defined on P¢ \ Q; its leaves are embedded n-disks
orthogonal to IT. These are the image under the normal map N of the fibres of
the normal disk bundle of IT of radius less than 5. The leaves are everywhere
transversal to the orbits of SO(n + 1,R). The quadric Q is the set of focal
points of II, and the closure of each leaf in F, is a closed n-disk that meets
Q orthogonally in a (n— 1)-sphere, invariant under complex conjugation. The
space II is embedded in P{ so that its normal bundle is isomorphic to its
tangent bundle, and the leaves of F, correspond to the tangent planes of II,
up to isotopy.

As a consequence of these constructions we get that each SO(n+1, R)-orbit
in P¢ is at constant distance from both Q and IT. That is, they are the level
sets of the functions “distance to Q” and “distance to IT”. The squares of
these functions are Bott-Morse functions on P¢, whose critical set is Q UTT,
a result in the spirit of [DR].

In Section 3 we look at the (now classical) theorem saying that P% modulo
conjugation is the sphere S*. This theorem has a long and remarkable history.
As explained by V.I. Arnold in [Ar4], he was informed by Rokhlin that this
result was known to Pontryagin in the 1930s. The first time this result appeared
in print was in 1971, in [Arl; p.175], where Amold used it to study real
algebraic curves in Pg. It was explained to us by Professor Arnold that at the
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time, it appeared to him that this was an obvious fact which had to be well
known, so he stated it without proof. To his surprise, he found no mention
of this theorem in the literature, so he asked a number of experts whether
they knew about it. In 1973-74 there appeared two independent proofs of this
theorem S* & P2 /conjugation, given by W. Massey and N. Kuiper [Ku, Mal].
So we call it the Arnold-Kuiper-Massey theorem (sometimes called the Kuiper-
Massey theorem in the literature). Several other proofs of this result have been
given by various authors afterwards, including important improvements and
generalizations (see for instance [Mar, Mo, Val, Va2]). We refer particularly
to [Ar2], where Arnold gives his original proof, providing a real algebraic
map Pg — S* that induces a diffeomorphism PZ /conjugation = $*, and to
[Ar3, Ar4], where he gives several interesting generalizations following the
same method. Different proofs, also with very remarkable generalizations, were
given recently by M.F. Atiyah and E. Witten [AW], and by!) M.F. Atiyah
and J. Berndt [AB].

Here we prove an equivariant version of this theorem, showing that the
equivalence Pg/j = $* can be realized by a real algebraic map ® which
conjugates the natural cohomogéneity 1 actions of SO(3,R) on P and S§*.
Our proof is quite elementary : it uses only linear algebra. The key point is to
give appropriate interpretations of P% and S*. In the case of the sphere, this
is given in [HL, DR], where it is observed that S* is the set of matrices with
norm 1 in the space S = R’ of real symmetric (3 x 3) matrices with trace 0.
Similarly, P% is the space of complex Hermitian symmetric (3 X 3) matrices
with trace 1 and satisfying H? = H, i.e. they are orthogonal projections into
complex lines (a fact which is well known to the physicists since these lines
correspond to states in quantum physics). The map @ is the one that carries
a matrix H € P% into the unit vector ¥(H)/||[¢v(H)|| € S, where (H) is
[%I — R(H)], I is the (3 x 3) identity matrix and R denotes the real part.

Finally, in Section 4 we use the results and constructions of the previous
sections to construct interesting isometric orthogonal actions on ch and S,
as well as interesting Bott-Morse functions on such manifolds. For this we use
the twistor fibration P3C — §% of Calabi—Penrose; that we describe below, and
the beautiful geometry of the quaternions. We also describe the complement
of P4 in Py, embedded as the image of the classical Veronese embedding
P% — S*, followed by the canonical projection of S* onto Pf.

') 'We thank Professor Atiyah for explaining to us that our proof is essentially the same as the
one in [AB]. This extends to the quaternionic and Cayley planes, which provides corresponding
theorems.
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We are grateful to Professors Vladimir Arnold, Etienne Ghys and Victor
Vassiliev for several useful comments and explanations. We also thank the
referee for his very helpful observations, which led to a significant improvement
of this article.

1. ON THE TOPOLOGY OF A QUADRIC IN P¢

Let O be a codimension 1, non-singular complex quadric in the projective
space P¢.

THEOREM 1.1. The complement of Q in P} is diffeomorphic to the total
space of the tangent bundle of the n-dimensional real projective space:

c\Q=T(Pyg).

Proof. 'We first notice that a non-singular hypersurface of degree d in P
is determined by a homogeneous polynomial of degree d in n+ 1 complex
variables, with no critical points outside 0 € C**!. Let P be the projective
space of coefficients of homogeneous polynomials of degree d in n + 1
complex variables. The general homogeneous equation of degree d in n + 1

variables 1s
(87 o
: : aOé(),-.-,Oé,, ZOO tre Zl’ln -

a(]—}—"'—i—C\C”-:d
This defines a polynomial, and hence a hypersurface X', in P x Pi. The
family of projective hypersurfaces of degree d in P¢ is given by the map

E:X =P,

induced by the projection of P x P¢ onto P. In P, the polynomials defining
singular hypersurfaces in P form a closed subvariety of complex codimension
one. Hence its complement €2 is connected. Since the map & is a locally trivial
fibration over €2, by Ehresmann’s lemma, one knows that any non-singular
hypersurface X C P¢ of degree d is ambient isotopic to the hypersurface
defined by the Fermat polynomial ¥ := z4 + --- + z4. That is, up to
isotopy we can assume that X is the projectivization of the affine variety
V.= {zf—f +o 2= 0} after removing the singular point 0 € V (cf. [LC;
Lemme 2.2]).

The projective space P¢ is obtained dividing C"*!—{0} by the C*-action:

9120, - - - zn) = (€"20,...,€"2,), t€C*=C\{0} .
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Since V is an invariant set for this C*-action, it follows that P{ \ X is the
image of C**!\ V. Moreover, C* is S' x Rt and if we divide C"*!\ {0}
by the R™ -action we get the sphere $?"~!. Thus ¢ \ X is the quotient of
§2r=1\ (VN §2"~1) by the corresponding S'-action. By [Mi2], these S!-orbits
are transversal to the Milnor fibres of the polynomial F%(z) = z2 + - - - + 22,
and their action on the fibres is given by the monodromy, which is cyclic of
period d. Therefore the Milnor fibre F is a d-fold cyclic cover of P{ \ X.

In the quadratic case d = 2, the Milnor fibre is diffeomorphic to the affine
variety Z% + .-+ 72 = 1. Let us decompose each vector Z := (20, - .,2n)
into its real and imaginary parts, Z = U + iV ; then the Milnor fibre is given
as the set (U,V) € R*! x R*™! such that |U]" — |[V|> =1 and U L V.
We notice that the map (U,V) — (U/||U||,V) induces an isomorphism of
this Milnor fibre with the tangent bundle of $”. The monodromy is given
by multiplication by —1, (U,V) — (—=U,—V). The quotient of F by this
involution is, therefore, the tangent bundle of the real projective n-space. [

We notice that part of the argument above is similar to that of Lemmas 2.2
and 2.3 in [LC] (see also Libgober in [Li; Lemma 1.1]), implying Corollary 1.2
below. We denote by Xy the projectivization of the affine hypersurface defined
by the Fermat polynomial ¥7, and by C7 := P{ \ Xy the complement of Xj.

COROLLARY 1.2. Let X be a non-singular hypersurface of P¢ of degree d.
Then :

1) the pair (P¢,X) is isotopic to the pair (P¢,Xo),; and

ii) the Milnor fibre F of ¥7; is a d-fold cyclic cover of CY, the projection
map F — C being given by the monodromy of the Milnor fibration of ¥
(which is cyclic of period d).

Since the Milnor fibre has the homotopy type of a bouquet of u spheres
S", by [Ph, Mi2], one has (as in [Li]) that for n > 1, the fundamental group
m1(CY) is isomorphic to Z/dZ, and m;(C})) = Wf(\/u §"), for j > 1, where
pw=(d— 1" is the Milnor number and \/ , " 1s a bouquet of y spheres
of dimension 7n. In particular:

(1.3) m(CH=0if 1<j<n, and m(Ch)=Z'if j=n.

We now let Q = Q0,1 C P¢ be the non-singular hyperquadric in P¢ with
equation |
2 2 _
g+ +z,=0,
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in homogeneous projective coordinates. Let j: P¢ — P¢ be the involution on
¢ given by complex conjugation: j([zo,-..,z:]) = [Z0,- - -, 2Zul, and let II be
the fixed point set of j, so that Il = Py.

Theorem 1.1 says that P¢ \ Q is diffeomorphic to the tangent bundle
T(I1), and II is the zero section of this bundle. Hence P¢ \ (QUII) can be
regarded as the set of non zero tangent vectors of I, so it is diffeomorphic
to the cylinder T(IT) x (0, 1), where T;(IT) is the unit tangent bundle of Q.
The group SO(n + 1,R) acts linearly on C"*! and this action descends
to an action on P{ which preserves Q. This action also leaves invariant
the real projective space Il, where it acts in the usual way (i.e. via the
action induced from the linear SO(n + 1, R)-action on R**!). This extends,
via the differential, to a transitive action of SO(n + 1,R) on T;(Il), with
isotropy subgroup SO(n — 1,R) x Z/2Z. Hence T,(IT) is diffeomorphic to
SO(n+ 1,R)/(SO(n — 1,R) x Z/2Z). But SO(n+ 1,R) also acts transitively
on Fi+1(2, 1), the (partial) flag manifold of oriented 2-planes in R"™! and
(non-oriented) lines in these planes, with isotropy SO(n — 1,R) x Z/2Z.. Thus
one has diffeomorphisms

Ti(I1) = SO + 1,R)/(SO(n — 1,R) x Z/2Z) = F'(2,1).

The Milnor fibre of the Fermat quadric F4 = 0 in C**! is diffeomorphic to
the total space of the tangent bundle 7'S*. Thus the link K of this singularity
is diffeomorphic to the unit tangent bundle of $". Hence K is diffeomorphic
to the Stiefel manifold V,,;, of orthonormal 2-frames in R, Therefore
Q C P¢, being the projectivization of K, is diffeomorphic to the Grassmannian
G412 of oriented 2-planes in R"™!'. Thus one has a double fibration:

Fir e, n

(1.4) / \

Q Py

where 7 and mm, are the maps that assign to each flag (P,I) either the
2-plane P € G,y or the line [ € Pg.

We form the corresponding double mapping cylinder (F*'(2, 1)x([0, 11)/~,
where ~ 1dentifies a point

((Po, 10),0) € F17(2,1) x {0}
with the point 7(Py,lp) = Py in G, 12 = 0, and a point

(P, 1), 1) € FPF'(2,1) x {1}
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with the point mp(P1,l;) = [, € Pg. The space we obtain is homeomorphic
to Pg¢. Furthermore, the double fibration (1.4) splits into two fibrations,
corresponding to the maps 7 and m,. In the first case the space we get is the
open mapping cylinder of 7, and this is P¢ \IT, while in the second case we
get P¢\ Q, which is the open mapping cylinder of 7. One has the following

THEOREM 1.5. The projective space P is the double mapping cylinder
of the double fibration (1.4). If we remove Q from P{ we obtain a manifold
diffeomorphic to the total space of the normal bundle of 11 = Pk in P¢.
Reciprocally, if we remove 11 from P¢, what we get is diffeomorphic to the
total space of the normal bundle of Q in P{. If we remove QUII from P,
what we get is diffeomorphic to Fﬁ_+1(2, 1) x (0,1), where

F7'(2,1) 2 SO(n + 1,R)/(SO(n — 1, R) x Z/2Z)

is the (partial) flag manifold of oriented 2-planes in R"™ and (non-oriented)
lines in these planes.

Proof. We notice that if we replace in Theorem (1.5) the word diffeo-
morphic by homeomorphic, then this theorem follows immediately from the
previous discussion. Let us prove that we actually have diffeomorphisms. By
Theorem 1.1, this is clear for P¢ \ Q. In fact, the fibration of P\ (Q UTI)
given by the manifolds F’j_+1,(2, 1) corresponds to the fibration on 7(IT) \ IT
given by sphere bundles of radius r > 0, for some metric on T(IT). These
correspond to boundaries of tubular neighbourhoods 7,(II) of IT C P¢. In
particular Pt \ Q is a tubular neighbourhood of II, hence P{ \ Q is diffeo-
morphic to the total space of the normal bundle of IT & P} in P¢. This
bundle is isomorphic to T(II).

Let us prove that P¢ \II is diffeomorphic to the total space of the normal
bundle of Q in P{. We observe that for all » > 0, the interior of Pg \ #,(I)
is diffeomorphic to P\ II. Now we prove that P \IT is actually a tubular
neighbourhood of Q. For this we recall that if N is a Riemannian submanifold
of PL, its normal map Ny is the function that associates, to each normal
vector v of N in P¢, the projection to P¢ (via the exponential map) of the
end-point of v € TP{ (see, for instance [Mil], p.32, or [AG]). Let us denote
by v(Q) the normal bundle of Q in P and consider the normal map

NQI V(Q) — P’é .

We notice that every complex projective line £ in P¢ orthogonal to Q, for
the Fubini-Study metric, is invariant under conjugation, which is an isometry.
So L is defined by equations with real coefficients (cf. §2 below), and it
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is totally geodesic in P%, since it is a complex projective line. Therefore L
intersects T1 transversally in a real projective line. This implies that the normal
map Ny is a diffeomorphism from the open disk bundle in v(Q) of radius
Z into P¢ \ I1. The union of all closed geodesic segments normal to O of
length 7 fill up all of Pg. Thus the distance from a point p € P¢ \ (ITU Q)
to Q is exactly the length of the unique geodesic segment joining p and the
unique point ¢ € Q such that this segment is orthogonal to Q. Hence every
tubular neighbourhood of Q in PZ, of diameter less than 7, is diffeomorphic

to P¢\II. [

We remark that one has a construction for the Milnor fibre F of the Fermat
polynomial ¥4 in the spirit of Theorem (1.5), since F' can be regarded as the
open mapping cylinder of the fibration

Var12 2SO+ 1,R)/SO(n — 1,R) — SO(n + 1,R)/SO(n,R) = 5",

where V,y;, is the aforementioned Stiefel manifold.

2. ON THE GEOMETRY OF Pg¢

We now look more carefully at the decomposition of P{. arising from the
double fibration (1.4). For this, it is convenient to look at two other interesting
foliations that arise naturally from the double fibration (1.4), and from other
considerations too.

The first foliation F; is actually defined on P¢ \ Il and its leaves are the
fibres of 7, which are 2-disks transversal to O, by Theorem 1.5. By construc-
tion, each leaf of J; is transversal to all the manifolds F TI(Z, 1)xt C Pg for
t € (0,1), intersecting each in a copy of Py and approaching IT as ¢ — 1.
Let us construct this foliation in a different way. We endow P with the
Fubini-Study metric. From the proof of Theorem 1.5 we know that the normal
map Ny of Q induces a diffeomorphism between the open disk bundle of
radius 7/2 and P¢\II. The leaves of F; are the images of the normal disks.
Since the conjugation j: P¢ — P¢ 1s an isometry, we have that a projective
line £ in P{ intersects Q at two conjugate points iff it is orthogonal to Q,
and this happens iff £ can be defined by equations with real coefficients. So
we call these CR-lines. If two distinct CR-lines intersect, they do so in a
point in IT = Pg. Also, each CR-line £ meets Il in a real projective line,
which is an equator of L. Since all complex lines in P{. are totally geodesic,
the real projective line £ NII is a geodesic in P¢, at equal distance /2
from both intersection points in £ N Q. This divides £ into two round disks
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of maximal diameter, orthogonal to Q. One can prove that through each point
in P¢ \II there passes a unique CR-line, hence these lines foliate this space.
Therefore the open disks into which the CR-lines split fill out the whole of

¢ \I1, they are totally geodesic in P¢ and orthogonal to Q, thus providing
a fibre bundle decomposition of P¢ \ I1, equivalent to the open disk bundle
of the normal bundle v(Q) of Q in P{. By construction, the closure of each
leaf in P{. is obtained by attaching to the leaf a real projective line Py C II,
which is its boundary (or limit set). This circle (a real projective line in IT) is
invariant by conjugation and it is an equator of a unique CR-line, therefore
it is also a closed geodesic for the Fubini-Study metric of P¢.

In the case of the foliation F,, the leaves are the fibres of m,, up to
1sotopy. They are transverse to Ffr+1(2, 1) x t, for every t € (0,1), and these
leaves are also transverse to II. We can describe this foliation more precisely
as follows. Given z € I1, we let P, be the pencil of real projective lines in 11
passing through z. Note that the tangent vectors at z to the lines of this pencil
give the tangent space of Il at z. Let [, be one of the lines of the pencil P,.
Its complexification is a projective line L, in P{ defined by an equation with
real coefficients, invariant under conjugation. This implies that L, intersects
Q at two points w; and w,, which are conjugate; the intersection L, N Q 1is
necessarily orthogonal and /, is an equator in L,. Thus, there is a segment
fz, half of a real projective line (a circle) in L,, joining the points w;, z and
wy. This line is orthogonal to Il and to Q, it is geodesic in P& and has
length 7, by the minimality of L,. Doing this for all lines in the pencil P,,
we get an open n-disk of radius 7/2 in P{, orthogonal to IT at z, filled
by geodesics in P¢ of length /2 and intersecting Q orthogonally. Thus the
normal map N is regular for vectors of norm < 7/2. The leaves of F,
are the images under Np of the fibres of the open disk normal bundle of
IT C P¢ of radius 7.

There is another interesting way of thinking about this foliation, up to
isotopy, which helps to understand the way in which its leaves approach Q. By
Corollary 1.2 we have that P\ Q is the Milnor fibre F := {ZZ +--- 4+ 72 =1}
divided by the monodromy (z1,...,2,) + (—21,...,—2,). The fibre F is
the tangent bundle of the n-sphere, so it has a natural foliation by leaves
diffeomorphic to n-planes. These planes can be described as follows. Let
us decompose each Z := (zj,...,z,) Into its real and imaginary parts,
Z = U+iV. The fibre F is the set (U, V) € R**! x R**! gsuch that |U]|| > 1,
|IUIP=|IVIP =1 and U L V. If |U|| = 1, then we are on the n-sphere
and ||V|| = 0. Given a fixed Uy € §" C R*"!, its “tangent space” is the
plane defined as follows: for each A € R with A > 1, let S)\(Up) be the
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(n — 1)-sphere in the affine n-plane perpendicular to AUy, consisting of all
vectors V such that the vector Z = AU + iV is in F; these must satisfy
V][> = A2 — 1. The radius of the sphere S\(Up) grows with X, while for
A\ = 1 the corresponding “sphere” is just one point. For a given Uy € §”, let us
denote by L(Up) the union of all these (n—1)-spheres Sx(Up), forall A > 1.
Then L£(Uy) is a copy of R" embedded in F as a component of the 2-sheeted
hyperboloid consisting of £(Uy)U L(—Up). The monodromy map interchanges
these two sheets of the hyperboloid, so their image in P¢ is a manifold
diffeomorphic to a plane, that we denote by F(Up). By the uniqueness of the
tubular neighbourhood, these are the leaves of J;, up to isotopy.

From this description of JF, one can see the way in which the leaves
approach Q. In fact, let us denote by S)(Up) the image of the sphere Sy (Up)
in P¢. It lies in F(Up). Let vx(Up) be the intersection of the unit sphere
§2+1 - C"l with the real half cone over Sy(U,) with vertex at 0. The
image of v\(Up) in P{ is also S\(Up). The sphere v,(Up) is the set of
vectors ( \/23)\7?1 Uy, \/2—;2?1 V) with (AU, V) in S\(Up). Therefore the limit

of vx(Up) is the set of vectors (—\172 Uy, —\%v) where v is V/||V||, with V as

above. Since the vectors % Uy and % v have equal length, the image A(Up)
in P¢ of this limit set is in Q, and it is a (n — 1)-sphere. By continuity,
the limit set of S\(Up) in P¢ is also A(Up). Since the conjugate of the
vector (U, V) 1s (U,—V), the sets v,(Up) and their limit, are invariant under
conjugation. Hence A(Up) is also invariant by conjugation.

Let us summarize the previous discussion in the following

PROPOSITION 2.1. The double fibration (1.4) induces two foliations F,
and F, such that:

i) The first one Fi is defined on P{\11; its leaves are embedded copies
of R?, orthogonal to Q, which are the images under the normal map of Q of
the fibres of the normal disk bundle of Q of radius less than 5. The closure of
each such leaf is a closed 2-disk that meets 11 orthogonally in a projective line
which is a closed geodesic in P{.. For each pair of conjugate points in Q, the
corresponding leaves are naturally glued together along their common limit

set in I1, forming a complex projective line defined by real coefficients.

i1) The second foliation F, is defined on P¢\ Q ; its leaves are embedded
n-disks, orthogonal to 11, which are the images under the normal map of
IT of the fibres of the normal disk bundle of 1 of radius less than 5. The
closure of each such leaf is a closed n-disk that meets Q orthogonally in a
(n — 1)-sphere, invariant under complex conjugation.
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We notice that the previous discussion also proves the following fact, that
we state as a proposition. We recall that given a Riemannian submanifold

N of P{, its focal points are the critical values of the normal map of N,
see [Mil].

PROPOSITION 2.2. The real projective space 11 = P}, consisting of the
points in P& with homogeneous real coordinates, is the set of focal points of
the quadric Q defined by the Fermat polynomial 75+ - -+z> = 0. Conversely,
the quadric Q is the set of focal points of II.

Thus, both manifolds Q and II can be regarded as caustics in P%, i.e. they
are the critical values of the Lagrangian maps defined by the corresponding
co-normal maps of Il and O, respectively (see [AG]).

Let us consider now the action of SO(n + 1,R) on P{, regarded as a
subgroup of the complex orthogonal group O(n + 1,C). This action leaves
Q invariant and it is by isometries with respect to the Fubini-Study metric.
An isometry of P¢ that leaves Q invariant necessarily carries the set of
focal points of Q into itself. Hence IT is also an invariant set for the
action of SO(n + 1,R). We know already that Q is the Grassmannian
Gnt12 =2 SO(n+1,R)/(SO(n—1,R)xSO(2,R)), so the action of SO(n+1,R)
is transitive on Q. Thus Q is one single orbit, and so is II. Let us look at
the orbit of a point w € P¢ \ (QUII). We claim that its orbit is the manifold
(F”++1(2, 1) x t) passing through w. For this we use again the normal map

No: v(Q) — P .

By the previous discussion, this map is a diffeomorphism from the open disk
bundle in v(Q) of radius 7 into Pg \ IT and the images of the fibres are
the leaves of Fj. Hence each point w € P¢ \ (QUII) is in the image of
the normal map Ny, i.e., there is a (unique) vector v,, € v¥(Q) normal to Q,
such that w = Np(v,); the norm of v, equals the distance d,, = d(w, Q)
from w to Q, which is > 0 and < w/2. That is, w corresponds, via Np,
to a point in the sphere bundle S, (v(Q)) of radius d,, in v(Q). We claim
that the SO(n + 1,R)-orbit O, of w is the image of this sphere bundle, i.e.
Ow = No(Sa,, (¥(Q))). For this we notice that the group SO(n+1,R) also acts
on the tangent bundle 7P¢ via the differential, and this action preserves the
(C) splitting TPE|p =2 TQ @ v(Q). This induces an action of SO(n+ 1,R)
on the normal bundle v(Q) of Q, and this action is isometric and commutes
with Ny, proving the claim. Hence the SO(n+ 1, R)-orbits are all manifolds
(F”++1(2, 1) x 1), for some ¢ € (0,1), with two exceptional orbits which are
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O and II, corresponding to t =0 and ¢ = 1. By [HL; 1.1], this implies that
O and II are minimal submanifolds of P}, which is obvious for Q, being
a complex submanifold. The orbits of maximal dimension, which in this case
are diffeomorphic to FT1(2, 1), are called principal orbits.

The previous arguments also show that each SO(n + 1,R)-orbit in Pg
is at constant distance from Q, and also from II, and these distances go
from 0 to Z. This proves that the space of SO(n + 1,R)-orbits in Pg is
the interval [0, %], with the two special orbits corresponding to the endpoints
of the interval. But one can actually be more precise about this statement.
Let us consider again the geodesic I, described above, in the construction of
the foliation J,. In fact we are interested in half of this geodesic segment.
To construct this “half geodesic segment”, that we shall denote by [, we can
start with any complex projective CR-line £. This line intersects II in a real
projective line, and it meets Q orthogonally at two conjugate points, say w and
w. Now we choose a point zo € IINL. Then [ is the geodesic (of length 7)
in £ joining the points zp and w, and it is a geodesic in P¢ because L 1is
totally geodesic. This geodesic [ starts at zo € IT and ends at w € Q. Hence
it meets each SO(n 4 1, R)-orbit orthogonally in exactly one point, since the
orbits are the level sets of the function distance to IT. Hence [ parametrizes
the orbits of SO(n + 1,R). This shows that the SO(n + 1,R)-action on P
1s a hyperpolar isometric action of cohomogeneity 1, which is already well
known (see for instance [HPTT, Ko]). In fact, cohomogeneity 1 means that
the principal orbits have codimension 1, and we know that this happens in
our case. An isometric action is said to be polar if there exists a closed,
connected submanifold % that meets all orbits orthogonally. In our case this
can be, for instance, the complete geodesic in £ determined by /. Such a
manifold 1s called a section. If one can choose such a section to be also flat,
one says that the action is hyperpolar. This is obviously satisfied in our case
since the section is a geodesic.

We have thus proved the following

THEOREM 2.3.

1) The natural SO(n + 1,R)-action on P} is an isometric, hyperpolar
action of cohomogeneity 1, whose spaée of orbits is the interval [0,7/2]. A
section for this action (i.e. a submanifold that intersects transversally each
orbit at exactly one point) can be constructed by considering some (any)
CR-line L, choosing a point z € LNII and taking the geodesic (a circle)
in L that passes through z and the two points where L meets Q.
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11) There are three orbit types: two special orbits, Q and Il, which
correspond to the endpoints {0,7/2}, and the principal orbits, which are
copies of the partial flag manifold,

F'7(2,1) 2 SO(n + 1,R)/(SO(n — 1,R) x Z/27Z),

of oriented 2-planes in R and lines in these planes. The manifold
Fi+1(2, 1) is diffeomorphic to the unit sphere normal bundle of Q in P¢, and
also to the unit sphere tangent bundle of Py. Each of the two special orbits
is the set of focal points of the other, and they are minimal submanifolds
of P¢.

iii) The complex projective lines in P whose homogeneous coordinates
are real, i.e. the CR-lines, foliate P \I1 and they are everywhere transversal
to the orbits of SO(n+1,R) (away from I1). In particular, they are orthogonal
to Q.

iv) The real projective space 11 = Py is embedded in P¢ so that its normal
bundle is isomorphic to its tangent bundle. Its “tangent spaces” naturally
define a foliation of P{\ Q by embedded copies of R", which are everywhere
transversal to the orbits of SO(n+ 1,R) (away from Q). In particular, they
are orthogonal to 11.

We now let g: P& — [0,7/2] C R be the function ¢(Z) = [d(Z, Q)]?,
i.e. g is the square of the distance to Q. It is clear that g is con-
stant along the SO(n + 1,R)-orbits, which are its level sets. Hence
g has the two special orbits O and II as critical set. It is clear
that if ¥ is a small disk in P¢ orthogonal to @ (or to II), then
the restriction of g to X 1is the ordinary quadratic map, se it is a
Morse function on X. This means, by definition, that g is a Bott-
Morse function. We have thus obtained the following results, motivated
by [DR}:

COROLLARY 2.4. The map q is a Bott-Morse function, whose level surfaces
are the orbits of SO(n+ 1,R) and the critical set consists of the two special

- orbits Q and 11 = Py.

Of course one can replace the function g above by p(Z) = [d(Z,I1)]?,
which is also a Bott-Morse function.
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COROLLARY 2.5. Let w: S*""' — PL be the Hopf fibration. Then the
composition p o w: $?"t!1 — [0,7/2] C R is a Bott-Morse function. The
critical set has two components, which are S'-bundles over the two special
orbits in Theorem 2.2. One of these is the Stiefel manifold V,12 C Sl of
real oriented 2-planes in R"!, diffeomorphic to the link of the affine Fermat
quadric, the other is the unique non-trivial S L _bundle over Py . (Both of these
are minimally embedded submanifolds of s+l by [HL].)

REMARKS 2.6.

i) We notice that if we let S>(P&) be the symmetric product (P& X Pg)/I,
where [ is the involution I(x,y) = (y,x), then there is a canonical holomorphic
surjection p: P& x P& — SP(PL) taking (x,y) to the point [(x,y)] in S*(Pg).
This induces an isomorphism S*(P¢) = PZ. Hence, every identification
Q = Pl also determines an analytic isomorphism S$*(Q) =2 PZ, where the
conic Q in P% is the image of the diagonal A. This is, essentially, a special
case of the projective Vieta Theorem, which says that P¢ is the n® symmetric
power of P&. A real version of this result was proved by Arnold in [Ar3;
Th. 2].

ii) Let us denote by j the antipodal map in P =2 CU{oo}. This is given
by j(z) = —1/Z, and is a fixed point free involution of P¢. The anti-diagonal
(the graph of the antipodal map) in P¢ x P{ is given by

A= {(-1/2)} .

This gives a copy of P( anti-holomorphically embedded in (P& x PL) \ A.
It is clear that A~! is invariant under the involution I(x,y) = (y,x) of
(P¢ X Pg). Thus A™' := {(z,—1/2)} is projected onto a smooth copy of P%
in P¢, disjoint from Q. Hence the identification ¢ of P{ with Q C P% also
determines, canonically, a copy of the real projective space Pg in P:\ O,
together with an involution of P¢ whose fixed point set is this P%. If Q is
the Fermat conic, {z] + 23 +23 = 0}, then this embedding of P} in P% is
the usual one.

iii) We notice that, also for n = 2, every diffeomorphism f: O — O
extends canonically to a diffeomorphism f: P¢ — P%, and this extension

——~——

1s functorial, ie., fbof; = fz ofl (cf. [Gh]). In fact, through every point
u€ Pt—Q, there are two tangents to Q, which determine points ¢(a,), ¢(ay)
in Q. Then f(u) is the point of intersection of the lines tangent to Q at the
points f(¢(a1)) and f(¢p(az)). A consequence of these remarks is that if G is
a group acting on Q, then the G-action extends to P%. In particular, if G is
SO(3,R), acting on Q = S* by rotations, its extension to P% is the action
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that we considered in Sections 2 and 3 above. Similarly, if G is Z/2Z acting
on @ as the antipodal map, then the corresponding extension to P% is given
by complex conjugation.

3. P{ AND THE 4-SPHERE S*

The previous discussion, restricted to n = 2 and compared to the
cohomogeneity 1 isometric action of SO3,R) on S* constructed in [HL],
motivates an equivariant version of the Arnold-Kuiper-Massey theorem [Arl,
Ar2, Ku, Mal], saying that PZ modulo conjugation is the 4-sphere. In this
section we give a new proof of this theorem. We construct an explicit algebraic
map ®: PL — S*, which is equivariant with respect to the cohomogeneity 1
isometric actions of SO(3,R) on P% and S* and induces a diffeomorphism
P% /conjugation = §*.

We start by recalling the SO(3,R)-action on S$*, as explained by Hsiang
and Lawson in [HL; Example 1.4 ].

Let S be the vector space of real 3 x 3, traceless and symmetric matrices.
As a real vector space S is R, and it can be equipped with a metric given by
the inner product (A, B) + trace(AB). Let S® be the space of matrices in S
with norm 1. One has an obvious diffeomorphism $* 22 S® . which becomes
isometric if we endow $* with its usual round metric and S® with the metric
given by the inner product in §. We shall identify these two spaces in the
sequel, denoting both of them by S* indistinctly. The group SO(3,R) acts on
S by A O'AO, where O is the transposed matrix (which is equal, in our
case, to O~!'). This induces an isometric action I' of SO(3,R) on S*. This
action on S* has two disjoint copies of P% as special fibres (see the remark
at the end of this section). The space of orbits is the interval [0, 1], with
the endpoints giving the special orbits. Each principal orbit (i.e. the orbits of
highest dimension) is a flag manifold

F?(2,1) = SOB3,R) / (Z/2Z x 7.)2Z) =~ L(4,1) / (Z/2Z),

of pairs (P,l) with P a plane in R® and [ line in P, where L(4,1) is the
lens space S° /(Z/4Z) = SO3,R) /(Z/27).
Let us give a similar description of P%. Let

53,0 ={HeM3,C)|H=H"}

be the space of complex 3 x 3 Hermitian matrices, where H* = H is the
adjoint matrix of H, obtained by first conjugating each entry of H and then
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transposing the matrix. We equip $(3,C) with the Hermitian inner product
1
3.1) <H1,H2> = 5 trace (H1H>) .

As a vector space, with this inner product, $(3,C) is the ordinary Euclidean
space E°. Consider the subset P(2) of $(3,C) defined by

(3.2) PQ)={He$H3,C)|H*=H and trace(H)=1}.

LEMMA 3.3. The set P(2) is a manifold, diffeomorphic to P%. Moreover,
if we endow P(2) with the metric defined by (3.1), then P(2) is isometric to
P% equipped with the Fubini-Study metric (of constant holomorphic sectional
curvature 4 ).

We remark that it is possible to describe P¢ in a similar way, but we
restrict our attention to n = 2 because this is all we need.

Proof. We claim that if H is in P(2), then it is an orthogonal projection
over a complex line. In fact, if H is in P(2), then it is diagonalizable by a
unitary matrix and its eigenvalues are 0 or 1, because H?> = H. Since the
trace is one, two eigenvalues must be 0 and the other is 1. Hence H 1is a
surjection of C* over a complex line, and this map has to be an orthogonal
projection because H is Hermitian. Conversely, it is clear that each line
L € C? determines a unique orthogonal projection of C?, and this is given
by a matrix in P(2). The diffeomorphism in Lemma 3.3 is achieved by the
map that carries H into the corresponding line in C>. To prove that this map
gives a metric equivalence, we notice that the unitary group U(3) acts on
$H3,C) by H— U*HU, and P(2) is an orbit of this action, with isotropy
(U2) x U(1)). Thus,

P(2) 2 U3)/(UQ2) x U(1)) = P%,

and the metric on P(2) is obviously U(3)-invariant. Hence the induced metric
on P%: is also U(3)-invariant, and this characterizes the Fubini-Study metric,
up to scaling. [J

We recall now that the quotient of P% by the complex conjugation Jjisa
smooth manifold, which is not an obvious fact since j has fixed points. This
is carefully explained in [Mar], so we only sketch a few ideas here. Away
from the fixed point set I1 =2 P%, the involution J 1s free, so the quotient
is a smooth manifold. The problem is on II. A tubular neighbourhood of
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I1 in P% can be regarded as an open disk normal bundle, and conjugation
carries each normal fibre into itself. Since the quotient of each normal 2-disk
by the involution is again a 2-disk, it follows that the quotient P%/j is a
topological manifold. Making this argument more carefully one gets that P2 /j
is in fact a PL-manifold, as noticed in [Ku], and therefore it is smooth,
since every piecewise linear 4-manifold is smooth. In [Mar] Marin defines the
smooth structure on PZ/j directly, without using PL-structures. An important
point is that the smooth structure on P%/j is such that the obvious projection
Pg — Pg/j is differentiable.

Let us denote by I" the aforementioned isometric action of SO(3,R) on S*,
and by I the standard action of SO(3,R) on PZ, which is by isometries with
respect to the Fubini-Study metric. This action is defined either by considering
SO@3,R) as a subgroup of O(3,C), acting on the space of lines in C>, or
via the action of SO(3,R) on the space of matrices P(2) C H(3,C) given by

(0,4) — 0'AO.

By Lemma 3.3, both metrics on P% are equivalent; also for every
O € SOB,R), H € P2) and v € C* such that H(v) = v, one has
O'HO(O'(v)) = O !(v), because O~! = . Hence both actions on
P%; =~ P(2) are equivalent. Similarly, given the SO(3, R)-actions T on P%:
and T on S*, we say that these actions are equivariant if there exists a map
®: P; — S* which makes the following diagram commutative :

SOG3,R) x P2 —— P2

o o

SOGB,R) x s+ — L 4.
In this case we say that @ conjugates the actions I' and . The map @
carries orbits into orbits, i.e. the decompositions of P4 and $* into orbits are
(smoothly) equivalent.

Let us now state the equivariant Arnold-Kuiper-Massey theorem :

THEOREM 3.4. There is a real algebraic equivariant map ®: P& — S*,
which is invariant by the complex conjugation j and induces a diffeomorphism
Ijzc /j = §*, providing a conjugation between the isometric SO(3,R)-actions
I on P4 and T on S*.
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We notice that Theorem 3.4, together with [HL], imply that the image of
P} C P% under the above map is the image of Py by the classical Veronese
embedding (P%, P%) < (Pg,S%).

The proof of Theorem 3.4 follows from several lemmas below.

LEMMA 3.5. Let A be a real (3 x 3)-matrix. Then A is the real part of
a matrix H in P(2) if and only if

1) A is symmetric with trace 1;

ii) A has 0 as an eigenvalue and the other two eigenvalues N\; and \;
are roots of an equation of the form:

N—-A+k=0,

for some constant k € R with 0 <k < }1.

If A and H are as above, and if O € SOB3,R) is such that O'AO is a
diagonal matrix, then the imaginary part B of H, taken into its canonical form
O'BO, has only two possible non-zero entries, which are ++v/k. In particular,
if k=0, then H=A.

Proof. Let us consider a matrix H € P(2) and decompose it into its real
and imaginary parts: H = A+iB. Then one has H = A'—iB’'. Also H=H
because H is Hermitian. Hence A = A’ and B = —B', i.e. A is symmetric
and B i1s anti-symmetric. Thus the trace of A is 1, proving statement (i). One
also has

H* =A”> — B> +i(AB + BA),
and H* = H because H is in P(2). Therefore A = A>—B? and B = AB+BA.
Now, A is symmetric, and so is A% ; these two matrices obviously commute,

so they can be diagonalized simultaneously by a matrix O € SO(3,R). Since
B> = A2 — A, one knows that O'B?0 is also diagonal:

pr 0 0
OB0O=|0 u 0],
0 0 ps

with p; = A2 — )\;, for each i = 1,2,3, where the \; are the eigenvalues
of A. But B is antisymmetric and commutes with B?, which is symmetric.
Hence the same matrix O takes B to its canonical form:

0 a c
OBO=|—-a 0 b
—c —-b 0

for some a,b,c € C. This implies that
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—a® — 2 —bc ab

O'B*0 = (O'BO)(0'BO) = —bc —a% — b2 —ac
ab —ac —b? — ¢?

which we know is a diagonal matrix. Therefore two of the numbers a,b,c
must be zero. Assume for instance that @ and b are 0, then both eigenvalues
A1 and A3 are roots of the polynomial

M —A4+c2=0.
This implies that
)\1+/\3:1 and )\1'/\3—_—C220.

Hence A\, = 0 (because the trace of A is 1), so 0 is an eigenvalue of A.
The other eigenvalues A\; and A; must both be > 0 and < 1, because their
product 1s non-negative and their sum is 1. Moreover the roots must be real,
therefore k = ¢ < %, proving statement (ii).

Also, in this case the eigenvalues of A determine the imaginary part B of

H up to sign:
0
B=40 1| 0

0
0 o',
0

S OO

—C

with ¢ = A\; — A = A3 — A2, proving in this case the last statement of
Lemma 3.5. The other cases, when either a = ¢ = 0 or b = ¢ = 0, are
similar to the previous one. This proves that if A = R(H) for some matrix
H ¢ P(2), then A is as stated in Lemma 3.5. Conversely, given A satisfying
these conditions, the above arguments tell us how to construct B so that these
matrices are the real and imaginary parts of some H in P(2). [

Now, given H € P(2), its real part is R(H) = 3 (H + H). Define
Y: P2Q) > M(3,R),

the space M(3,R) being the space of real (3 x 3)-matrices, by the formula
1
(3.6) Y(H) = 513 — R(H) € M3,R),

where I3 is the (3 x 3)-identity matrix. In other words, ¥ (H) 1s the real part
of the matrix (%13 — H). Since H € P(2), it follows that (H) is actually
contained in S.

It is clear that the above action of SO(3,R) on P(2) given by conjugation is
equivalent, via the above diffeomorphism P(2) = P2, with the standard action
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has
PY(O'HO) = l1 - l(Ot(H +H)0) = (%1 - %(H +H))0 = O'Y(H)O..

Hence we have

LEMMA 3.7. The map 1 is equivariant. That is, for every O € SO(3,‘ R)-

and H € P(2), one has )(O'HO) = O'yY(H)O.

LEMMA 3.8. Given S € S — {0}, there exists a unique positive t € R,
such that the matrix (%I — 1S) is the real part of some matrix H € P(2).

Proof By Lemma 3.7, we may assume that S is diagonal. Hence the
matrix S\t = (%—I — tS) is also diagonal, say

A1(0) 0 0
S=1 0 Mo 0
0 0 @

with \;(¢) = % — tu;, where the p; are the eigenvalues of S. We notice that
for all # € R, one has

trace :S’; =1—t(traceS) =1,

because S has trace 0. Hence all these matrices satisfy condition (i) of
Lemma 3.5.

Let us look for the possible values of ¢ that give solutions of Lemma 3.5.
That is, we want ¢ > 0 for which one eigenvalue A;(r) is O and the others
are such that their sum is 1 and their product is > 0 and < %.

Let us number the eigenvalues of S so that py < py < ps. Since their
sum is O and S is not the zero matrix, one must have p; < 0 and p3-> 0.
If we want ¢ as above, one A;(f) must vanish. Let us look for solutions with

A1(t) = 0. This means that z‘: Ll < 0, and we want ¢t > 0. Hence, there
are no solutions with A\ {(¢) =

Now let us look for solutlons with A\p(f) = 0. This implies that ¢ = 31— X
for this to be possible we must have u, # 0. If up; < 0, then # < 0 and we
want ¢ to be positive. Thus, we only care about p; > 0. We have

(D) = —(1 — =) and M\t = _(1 _ 4
2 )

We have p; < 0 < py, so Ai(1) > 0. If pp < sz, then A3(¢) < 0, thus the
product \;(#)A3(¢) is < 0, so there are no such solutions to Lemma 3.8. The

studied in §2 and §3 above. It is also clear that, for every O € SO@3,R), one .
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other possibility is pp = p3 ; this also implies A3(f) = 0. In this case one has
AM(@®) =1 and (@) = @) =0, and ¢ = ﬁ; is positive. Hence we have a
solution, and this is unique because u, = u3. If up, = 0, then A\(f) cannot
be 0 and we cannot find solutions like this.

-Summarizing, so far we have seen that: i) there are no solutions as in
Lemma 3.8 for which A\(f) = 0; i1) if u, < 0, there are no solutions as in
Lemma 3.8 for which A\;(#) = 0; and ii1) if u; = pus3, then there is a unique
solution as in Lemma 3.8, for which A\(f) = A\3(r) =0 and A\(¢) = 1.

Finally, let us look for solutions with A3(¢) = 0, i.e. with t = 527; We
know, by hypothesis, that p, < ps and p3 > 0. If pup, = u3, then we are
in the previous case and there is a unique positive ¢ giving a solution as in

Lemma 3.8. Let us assume now that p, < pz. Then we have
1 1
MO =21-2) and @ =0-5,
3 3 3 3.

which are both > 0. Since their sum is 1, it follows that each \;(¥) is also
<.

The product of A;(¢) and A(#) satisfies

1
OSAﬂ%M®=-U—M+M ”f%*—@+mm)
H3 H3 13
1
_ _(2+ 112 <

(11 +M2)2) =4

since puy + o + p3 = 0 and (#f‘{‘_‘:fz)z < % because 41‘1(“ + b)? > ab for any
1

real numbers a and b (with equality if and only if a = b). Hence ¢ = s
is the unique solution satisfying the conditions of Lemma 3.8.  []

We now “normalize” the map 1 so that its image is contained in $* C S.
For this we define a function

a(H) = [trace(p(H))] "2 ,
i.e. a(H) is the inverse of the norm of ¥(H) in &, and we set
O(H) = a(H) P(H).
One has
trace[y(H)*] = trace[(% I; — % (H + )]

1 1 1 _ o
= tracel Is — 5 (H + H) + Z(H2 + H + HH + HH)]

1 _
= é + 1 trace(HH + HH) ,
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which is always positive since the matrix (HH+HH) is positive semi-definite,
so its trace is > 0. Hence the maps « and @ are well defined. It is clear
that the image of @ is contained in §* C S, because the linearity of the trace
implies that

[trace(D(H))]* = o*(H) [trace p(H)]* = 1.

It is also clear that @ is SO(3,R)-equivariant, since the trace is invariant
under conjugation and 1 is equivariant by Lemma 3.7. These considerations
imply both Lemma 3.8 and the following

LEMMA 3.9. The map ® is an equivariant surjection from P(2) over
S* C S, and it is two-to-one, except over the image of the real matrices in
P(2) where it is one-to-one.

This gives the map in Theorem 3.4 that determines an equivariant diffeo-
morphism between $* and Pz modulo the involution given by conjugation.
To complete the proof of Theorem 3.4 we need to show that @ is invariant
under the involution of P(2) that corresponds to complex conjugation in P%.
For this we notice that if Ly is the complex line in C* which is the image
of H € P(2), and if 0 # (z1,22,23) € Ly, we can associate to H the point in
P%: with projective coordinates [z1,22,z3]. To the matrix H there corresponds
the line with projective coordinates [Z;,Z»,Zz3]. Therefore we have

LEMMA 3.10. The involution jx of P(2) defined by j*(H) = H coincides
with the involution j of P% given by complex conjugation, [zi,z2,23] EN
[21722723]'

Then @ is invariant under this involution, since R(H) = R(H), proving
Theorem 3.4. []

4. SOME APPLICATIONS AND REMARKS

It is interesting to describe explicitly the orbits of the I’ action of
SO(3,R) on S§*, regarded?) as the set of matrices with norm 1 in S. In
fact, the orbits of this action are conjugacy classes (or congruency classes) of
traceless symmetric matrices whose square has trace 1. This is the connection
between our construction and the spherical Tits buildings. Every S € S can

2) This orbit description of $* is also given in [Ma2].
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be diagonalized by an element in SO(3,R), hence every orbit has a unique
representative which is diagonal. So let us assume that S is diagonal with
eigenvalues Aj, Ay, A\3. The two special orbits correspond to the cases when
two eigenvalues coincide. Since A; + Ay + A3 = 0 and )\% + )\% + )\g =1, 1if

two eigenvalues coincide we must have, up to conjugation, A\; = Ay = \}6
S = — el — 2
and A3 = 75> Of Al = A = 76 and A3 = N In both cases the

corresponding matrix is determined by the plane P given by the two equal
eigenvalues, say A; and )\,. Equivalently, this matrix is determined by the
line orthogonal to P, in which we act by the multiplier \; = i% ; the sign
here distinguishes the two orbits. Since SO(3, R) acts transitively on the lines
in R3, it follows that each of these special orbits is a copy of P2, as we know
from [HL]. The general orbits occur when the three eigenvalues are distinct
and the corresponding eigenspaces are orthogonal lines. Since the trace is O,
two eigenvalues determine the third. Hence in each case the transformation
1s determined by the plane P given by two eigenvalues and the line [ in P
given by one of them, together with the corresponding multipliers on [, on
the line orthogonal to [ in P and on the line orthogonal to P in R®. That
i1s, we have a flag (P,]) in R3, together with the multipliers A;, A\, and
\3. Since the action of SO(3,R) is transitive on the planes in R® and on
the lines in each such plane, it follows that each principal orbit, a copy of
the flag manifold F3(2,1), is the orbit of the flag (P,[). The different orbits
correspond to the different multipliers.

We also notice that there is a double fibration, similar to the one considered

in (1.4) above:
F32, 1

4.1) / X
Py Py

where m(P,l) = [ and m(P,l) = P. We can form the corresponding
double mapping cylinder (F3(2, 1) x [0, 1])/ ~, where ~ identifies a point
((Po, 1), 0) € (F3(2,1) x {0} ) with the point m1(Po,lo) = lp € Pg, and a
point ((P1,1),1) € (F*(2,1) x {1}) with the point m,(Py,l,) = Py € Pj. We
obtain S*.

The double fibration given by (1.4) in this dimension descends to (4.1)
by conjugation. By the previous discussion, the image of Q in S$* is
the copy of Pg which is the orbit of the diagonal matrix with eigen-

values {-%, —%, i} while IT is taken diffeomorphically into the orbit

V6
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of {i Ly =2 }
V6 Ve V6

Since the action of SO(3,R) in $* is by isometries and is transitive
on each orbit, the principal orbits are at constant distance from each of
these exceptional orbits M; = Pi and M, = P%, i.e. they are “parallel”. In
other words, as in Section 2, the principal orbits are the level sets of the
function f: S* — R given by f(x) = (d(x,M;))* (or the level sets of the
function g(x) = (d(x,M>))?*). Both f and g are smooth Bott-Morse functions
(cf. [DR]).

The fixed-point free involution on $* given by t:A € S = —A € S
commutes with our SO(3,R) action and therefore it takes SO(3,R)-orbits
into orbits. The quotient $*/¢ is the real projective space Py, equipped with
an isometric SO(3, R)-action. The two exceptional orbits M; and M, on S
are identified by .. Thus we have only one exceptional orbit for the action
of SO(3,R) on P§. The orbit N of the matrix in S* which corresponds
to the matrix in S whose eigenvalues are {——\}—5,0,%} is the manifold

consisting of points such that d(x,M;) = d(x,M,). Then, N 1is invariant under
. and separates S* into two regions which are interchanged by ¢ (i.e. N is an
“equator” for the orientation-reversing involution ¢). The orientable 3-manifold
N is the flag manifold described earlier, but it can also be described as the
set of ordered pairs (I;,l) of non-oriented lines of R® which are mutually
orthogonal. These lines are the eigenspaces corresponding to the eigenvalues

—% and %, respectively.

The restriction of ¢ to N is the orientation-preserving and fixed-point free
involution given by (I, L) — (l,/;). Let m denote the double covering map
from S* to Py = S*/u. Let 7(M) = w(M,) :== M = P% and 7(N) := N. The
manifold N is diffeomorphic to SO(3,R)/D,, where D, is the group of order
8 of isometries of the square. This is because SO(3,R) acts transitively on the
set of non-oriented pairs {I;,l,} of lines in R® which are mutually orthogonal
and the 1sotropy group is precisely D4. Therefore N is diffeomorphic to
SUQ)/Dy = §*/Dy, where D, is the binary dihedral group of order 16,
ie. Dy = ¢~ 1(Ds) where ¢: S® =2 SUQR) — SO@3,R) is the canonical
epimorphism.

The embedding Py = M C P is exactly the embedding given by the
Veronese embedding P — S*, followed by the canonical projection from
§* into Py (see [HL]). We know that S*\ (M| U M,) is diffeomorphic to
N xR, and the restriction of the involution ¢ to S*\ (M;UM>) is conjugate to
the involution J of N x R given by ((I},5),1) — (b, 1), —1). Therefore the
quotient (N x R)/J is diffeomorphic to the total space of the non-orientable
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line bundle over N. Summarizing, we have the following

COROLLARY 4.2. Let Py & M C Py be the embedding induced by the
classical Veronese embedding P — S*. Then Py \ M is diffeomorphic to the
total space of the non-orientable real line bundle over SU(2)/Dy = S°/Dj.
In particular the fundamental group of Py \ M is the binary dihedral group
of order 16.

Let us now recall that there is a remarkable fibre bundle 7: P& — $* with
fibre Pg, called the twistor fibration, or also the Calabi-Penrose fibration (we
refer to [Sa, SV] for details). The fibres are called the twistor lines. There
are several equivalent ways to construct this fibration. The standard way
is to think of P& as being the homogeneous space SO(5,R)/U(2), which
fibres over SO(5,R)/ SO4,R) =2 $* with fibre SO(4,R)/U(2) = $* = P.. A
more geometric way of describing this twistor fibration is to consider S* as
being the quaternionic projective line P}H, of right quaternionic lines in the
quaternionic plane #H? (regarded as a 2-dimensional right H-module). That
is, for q := (q1,¢92) € H?> (q # (0,0)), the right quaternionic line passing
through ¢ is the linear space

Ry ={(@1\ 2N | A€ H}.

We can identify #?> with C* via the R-linear map given by (q1,¢2)
(z1,22,23,24), Where g1 = z1 + 20§ = x1 + Xl +x3j + x4k and g = 23 +z4j =
v1 + y2i + y3j + v4k. In this notation i, j, k denote the standard quaternionic
units, 73 = x1 + xod, 20 = x3 + x4i, 73 = y1 + yoi and z4 = y3 + yq4i.

Under this identification each right quaternionic line is invariant under
right multiplication by i. Hence such a line is canonically isomorphic to C2.
If we think of P% as being the space of complex lines in C*, then there is
an obvious map m: P{, — $*, whose fibre over a point H € P;, is the space
of complex lines in the given right quaternionic line H = C?; thus the fibre
is Pg.

The group Conf(S*) of orientation preserving conformal automorphisms
of $* is isomorphic to PSL(2,H), the projectivization of the group of 2 x 2,
invertible, quaternionic matrices. This is naturally a subgroup of PSL(4,C),
since every quaternion corresponds to a couple of complex numbers. Hence
Conf_(S*) has a canonical lifting to a group of holomorphic transformations
of P2, carrying twistor lines into twistor lines.

Let us split (differentiably) the tangent bundle of P} into a horizontal sub-
bundle and a “vertical” sub-bundle (the bundle tangent to the twistor fibres),
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via the Levi-Civita connexion of the metric. Since the lifting of Conf(S*)
permutes the twistor lines, this action on TPg preserves the decomposition into
horizontal and vertical sub-bundles. By [SV], the action on the vertical sub-
bundle is by isometries with respect to the Fubini-Study metric (which is just
the standard metric on S?). We remark that the horizontal bundle is a holomor-
phic complex sub-bundle of rank two of the complex tangent bundle of P,
On this sub-bundle, the action is conformal. However, the group SO(5,R) is a
subgroup of Conf_(S*) and, by construction, its induced action on the horizon-
tal sub-bundle is by isometries. Thus we have an isometric action:of SO(5, R)
on P, with respect to the Fubini-Study metric, which restricts to an isometric
action of SO(3,R) on P, via the representation I' of this group in SO(5, R)
discussed earlier. We denote this latter action of SO(3,R) on P% by T.

We notice that the special orbits of the SO(3,R)-action on S* give rise
to the special orbits in P}, each being diffeomorphic to P%. There is one
such orbit for each point in the twistor line over a point in the corresponding
special orbit in $*. Since the twistor bundle is trivial when restricted to any
proper subset of $*, it follows that the set of all special orbits of each type
is diffeomorphic to Pg x P&. Similar remarks apply to the principal orbits.
Moreover, by [HL], each special orbit is a minimal submanifold of P2, and
so is their product Pg x P¢ since the projection Pg — S* is a harmonic map
which is a Riemannian fibration (i.e. it is transversally isometric), by [EL]
and [EV; 7.9]. Thus we have

THEOREM 4.3. The action T of SO3,R) on P% is such that:

(1) The action is by elements of PSU(4), i.e. by isometries of P% that
permute the twistor lines, sending each twistor line isometrically onto its
image. '

(2) There are two exceptional types of orbits, each of which is diffeomorphic
to Pg. If we denote by K| and K, the union of orbits of each of these two
types, then both K, and K, are diffeomorphic to P%( X Pé. Furthermore, K;
and K, are minimally embedded in P%.

(3) The principal orbits are diffeomorphic to F3(2,1). Hence the action
has cohomogeneity 3.

(4) The functions hi: Pl — R and hy: Pt — R, given by hi(Z) =
(d(Z,K)))? and hy(Z) = (d(Z,K>))?, are both Bott-Morse functions with
critical set K1 UK,.

(5) The space of orbits is S* x [0, 1].
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We may now consider the Hopf fibration 7: S’ — S* and we identify
R® =2 742 in the obvious way.
The group SU(2) consists of all 2 x 2 complex matrices of the form

-2 2
Sp(1) of unit quaternions by mapping each such matrix to the unit quaternion

u = z1 + 20j. Hence SU(2) acts by the right on H? = R® by the map
((q1,92),w) — (q1u, qou), for each u € Sp(1) and (g1,q2) € H?. This action
leaves invariant each right line R, (¢ = (¢1,92)) and it acts as an isometry
on this line.

( . Z2> with determinant 1. This group can be identified with the group

On the other hand, each complex number is a quaternion, so each matrix

in SU(2) can be regarded as a 2 x 2 quaternionic matrix in GL(2,H), the

group of all invertible 2 X 2 quaternionic matrices A = <Z Z) . This group

acts on H? by the left according to the formula
q = (q1,92) = (aqy + bgz, cq1 + dqp) = A(g),

and induces the aforementioned action of P SL(2,7) on P%Lt >~ G4
We thus have an action of SU(2) x Sp(1) on R® = #? by the formula

((g,w),(q1,92)) — (agqiu + byqou, cqqi1u + dyqou)

for each g = <Zzg Zg) in SU(2). This action induces a natural action
g Yy

T: (SUQ) x SUQ)) x §7 — §7

on the sphere S, and this action is a lifting of the action I" considered in
Section 3, i.e. the following diagram is commutative :

(SU®) x SUQR)) x §7 —L &
fxﬁl ﬁl
SOB,R) x &* I & §*

where f(g,u) = ¢(g), ¢ being the canonical epimorphism from SU(2) to
SO(@3,R)). It is clear that I'((—Id, —1),x) = x for all x € §7, so I' actually
descends to an action of

SO®4) & SU(2) x Sp(1)/(Z/2Z) ,»

on S7. We have
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THEOREM 4.4. This SO(4) action on S satisfies :

(1) It is a hyperpolar isometric action of cohomogeneity 1, with space of
orbits the interval [0, ].

(2) The two exceptional orbits are both diffeomorphic to Pg X S? and both
are minimally embedded in S’ .

(3) The principal orbits are diffeomorphic to F3(2,1) x S3.

(4) The square of the distance functions to the exceptional orbits are both
Bott-Morse functions.

(5) The union of the two exceptional orbits, both copies of Pg x S°, is the
Spanier-Whitehead dual of one principal orbit F3(2,1) x S°.

We notice that the action of SO(n + 1) on C"! considered in Section 2
also provides, when n = 3, an isometric action of cohomogeneity 1 of SO(4)
on S7. However, in this case the two special orbits are the inverse images
of the quadric Q and the real projective space IT = P under the projection
S7 — P¢. So this action is not equivalent to the “twistorial” one given by
Theorem 4.4.

REFERENCES

[Arl] ARNOLD, V.I. On the distribution of ovals of real plane algebraic curves,
involutions of four-dimensional manifolds and the arithmetic of integral
quadratic forms. Funct. Anal. Appl. 5 (1971), 169-176.

[Ar2] —— A branched covering of CP*> — S*, hyperbolicity and projective
topology. Siberian Math. J. 29 (1988), 717-726.
[Ar3] —— Topological content of the Maxwell theorem on multipole representa-

tion of spherical functions. Topological Methods in Nonlinear Analysis
7 (1996), 205-217.

[Ard] —— Relatives of the quotient of the complex projective plane by complex
conjugation. Proc. Steklov Inst. Math. 224 (1999), 46-56.

[AG] ARNOLD, V.I. and A.B. GIVENTAL. Symplectic geometry. In: Dynamical
Systems 1V, Encycl. Math. Sci. 4, 1-136. Springer, 1990.

[AB] ATIYAH, M. F. and J. BERNDT. Projective planes, Severi varieties and spheres.

To appear in J. Diff. Geom.

[AW] ATIYAH, M.F. and E. WITTEN. M-Theory dynamics on a manifold of G,
holonomy. Adv. Theor. Math. Phys. 6 (2001), 1-106.

[BGS] BALLMANN, W., M. GROMOV and V. SCHROEDER. Manifolds of Nonpositive
Curvature. Birkhduser, 1985.

[DR] DuaN, H.B. and E. REES. Functions whose critical set consists of two

connected manifolds. In: “Papers in honor of José Adem”, Bol. Soc.
Mat. Mexicana (2) 37 (1992), 139-149.




202

[Eb]
[EL]
[EV]
[Gh]
[HL]

[HPTT]

[Ko]
[Ku]
[LC]
[Li]

[Mar]

[Mal]
[Ma2]
[Mil]
[Mi2]
[Mo]
[Ph]
[Sa]
[SV]

| [SW]

[Val]

LE D. T, J. SEADE AND A. VERJOVSKY

EBERLEIN, P.B. Geometry of Nonpositively Curved Manifolds. University of
Chicago Press, 1966.

EELLS, J. and L. LEMAIRE. Two Reports on Harmonic Maps. World Scientific
Publ., River Edge (N.J.), 1995.

EELLS, J. and A. VERJOVSKY. Harmonic and Riemannian foliations. Bol.
Soc. Mat. Mexicana (3) 4 (1998), 1-12.

GHYS, E. Prolongements des difféomorphismes de la sphere. L’Enseignement
Math. (2) 37 (1991), 45-59.

HSIANG, W.Y. and B.H. LAWSON. Minimal submanifolds of low cohomo-
geneity. J. Differential Geom. 5 (1971), 1-38.

HEINTZE, E., R. PALAIS, C.-L. TERNG and G. THORBERGSSON. Hyperpolar
actions on symmetric spaces. In: Geometry, Topology and Physics for
Raoul Bott (S.-T. Yau, ed.), 214-245. Intematlonal Press, Cambridge,
1995.

KOLLROSS, A. A classification of hyperpolar and cohomogeneity one actions.
Trans. Amer. Math. Soc. 354 (2002), 571-612.

KUIPER, N. The quotient space of CP(2) by complex con]ugauon is the
4-sphere. Math. Ann. 208 (1974), 175-177.

LE, D. T. and D. CHENIOT. Remarques sur les deux exposés précédents. In:
Singularités a Cargese, 253-252. Astérisque 7-8, 1973.

LIBGOBER, A. Homotopy groups of the complements to singular hypersur-
faces II. Ann. of Math. (2) 139 (1994), 117-144.

MARIN, A. CP?/o ou Kuiper et Massey au pays des coniques. In: A la
recherche de la topologie perdue. Progress in Mathematics, Vol. 62,
Birkhduser, 1986.

MASSEY, W.S. The quotient space of the complex projective plane under
conjugation is a 4-sphere. Geometrice Dedicata 2 (1973), 371-374.

—— Imbeddings of projective planes and related manifolds in spheres.
Indiana Univ. Math. J. 23 (1974), 791-812.

MILNOR, J. Morse Theory. Ann. of Math. Study 51. Princeton Univ. Press,
(5™ printing) 1973.

——— Singular Points of Complex Hypersurfaces. Ann. of Math. Study 61.
Princeton Univ. Press, 1968.

MOSTOVOY, J. Algebraic cycles and antiholomorphic involutions on projective
spaces. Bol. Soc. Mat. Mexicana (3) 6 (2000), 151-170.

PHAM, F. Formules de Picard-Lefschetz généralisées et ramification des
intégrales. Bull. Soc. Math. France 93 (1965), 333-367.

SALAMON, S. Harmonic and holomorphic maps. In: Lecture Notes in Math.
1164 (ed. by M. Meschiri et al.), 162-224. Springer, 1985.

SEADE, J. and A. VERJIOVSKY. Higher-dimensional complex Kleinian groups.
Math. Ann. 322 (2002), 279-300.

SPANIER, E.H. and J.H.C. WHITEHEAD. Duahty in homotopy theory.
Mathematika 2 (1955), 56-80.

VASSILIEV, V. A. A geometric realization of the homologies of classical Lie
groups and complexes, S-dual to flag manifolds. St. Petersburg Math.
J. (formerly Leningrad Math. J.) 3 (1992), 809-815.




[Va2]

[Wa]
[Ya]

[Za]

QUADRICS, ORTHOGONAL ACTIONS AND INVOLUTIONS 203

—— Invariants of knots and complements of discriminants. In: Develop-
ments in Mathematics: the Moscow School, ed. by V.I. Amold and
M. Monastyrsky, 194-250. Chapman and Hall, 1993.

WALL, C.T.C. Duality of real projective plane curves: Klein’s equation.
Topology 35 (1996), 355-362. '

YASUKURA, O. A classification of orthogonal transformation groups of low
cohomogeneity. Tsukuba J. Math 10 (1986), 299-326.

ZARISKI, O. Algebraic Surfaces. Springer Verlag, 2" edition, 1972.

(Recu le 15 avril 2001 ; version révisée recue le 21 février 2003)

Lé Diing Tréng

CMI — Université de Provence
39, rue Joliot-Curie

F-13453 Marseille Cedex 13
France

e-mail : ledt@gyptis.univ-mrs.fr

J. Seade
A. Verjovsky

Instituto de Matematicas
Universidad Nacional Auténoma de México
Unidad Cuernavaca
Av. Universidad s/n
Colonia Lomas de Chamilpa, C.P. 62210
Cuernavaca, Morelos
México
e-mail : jseade @matcuer.unam.mx
alberto @matcuer.unam.mx

e e e e e







	QUADRICS, ORTHOGONAL ACTIONS AND INVOLUTIONS IN COMPLEX PROJECTIVE SPACES
	0. Introduction
	1. ON THE TOPOLOGY OF A QUADRIC IN $P_C^n$
	2. ON THE GEOMETRY OF $P_C^n$
	3. $P_C^2$ AND THE 4-SPHERE $S^4$
	4. SOME APPLICATIONS AND REMARKS
	...


