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§ 3. Kahler manifolds

We view a Kahler manifold as a Riemannian manifold W with a closed

2-form u>.Everysubmanifold V of dimension n 2m satisfies the Wirtinger

inequality

(3.0) Vol(V) > [ (u;)m,
Jv

and equality

(3.1) Vol(V) [ (u)m
Jv

holds if and only if V is complex analytic (of complex dimension m). Observe

that (3.0) and (3.1) imply the Federer theorem.

Start now with a Kähler manifold X of real dimension n 2m and apply

(3.1) to the iterated graph (Tf)k C Xk of an endomorphism f:X X. We

get

(3.2) Vol (I»*

where a G H2(X, R) is the cohomology class represented by the structural
k

i
2-form, (JZa) S/=i(/*)'(a)' anc^ 1^] is the fundamental class of X.

When X CPm and deg/ d pm we have

k nk+1 _ 1

E.)-VrB
and conclude that

(3.3) lov rf log deg/.

Together with (1.0) this implies our main inequality (0.1).

Remarks. (3.3) holds whenever a is an eigenvector of the operator
-A //2(X, R) but not generally, as shown by linear endomorphisms

of tori.

When X is complex but not Kähler, neither "lov" nor entropy can be

estimated in homological terms. Moreover, the entropy of a holomorphic
vector field can be non-zero. (In the Kähler case, maps homotopic to the

identity have "lov" 0.)
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Take a complex semi-simple Lie group and factor it by a discrete uniform
subgroup. The group translations in this factor can have non-zero entropy.
To be specific, we take SL2(C) acting by isometries in three-dimensional

hyperbolic space. Thus geodesic flows on compact 3-dimensional hyperbolic
manifolds are factors of translations of the above type and their entropy must
be positive.

Hopf manifolds

The Hopf manifold PT is diffeomorphic to S1 x S2'n~l. As a complex
manifold it is the factor of Cm \ 0 by the following action of Z :

xecm\0, zoeC, \zo\ /0,l, rez.
There is a natural fibration Hn -» CPm~l and each endomorphism of Cpm~1

extends to Hm. When m > 1 Hopf manifolds are not Kähler; nevertheless,

for any endomorphism / : ET -a Hm we have

(3.4) h(f) lov / log deg /.
Proof. Each endomorphism / preserves the fibers of the fibration

Hm —» CPm~l and "lov" is additive in the following sense.

Given a holomorphic fibration H -A- V with fibers Tv, v G V, equiped with
Kähler structures. Suppose that structural cohomology classes av G H2(TV; R)
are parallel under the holonomy action of 7Ti(V). If is a fiber-

preserving endomorphism, one can define

* A(£*) ^ E Cry'K,) e R),
/= 1

vo e V, and an endomorphism g: V -A V induced by /.

The addition formula

lov/ lov g+ fclhn
1 log<^(£a)m, [r„0]^

where m dimcTVo, and [TVo] is the fundamental class of TVo.

This formula is almost as obvious as (3.2) and, together with (3.3), it
yields (3.4).
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Generalizations and problems

In the previous discussion, we avoided mentioning the fact of the scarcity

of complex endomorphisms. I am not able to add any interesting examples to

those considered above1). Generic manifolds have no endomorphisms. Every

surjective endomorphism / is finite-to-one and when deg / =1 it is injective.
More generally, if V and V' are complex (not necessarily compact or Kähler)

manifolds of equal dimensions and their even Betti numbers are finite and

equal (i.e. b2l b'2i) then every proper surjective holomorphic map /: V -7 V
is finite-to-one and when deg / 1 the map is injective. The finitness

condition cannot be omitted; take C2, blow it up at all points from a lattice.

The endomorphism of the resulting manifold induced by the transformation
C2 -A C2, x I—> I, has infinitely many blow-downs.

The lack of endomorphisms can be offset by abundance of general

holomorphic graphs. The most regular asymptotic behavior is displayed by
graphs F C X x X of finite type when both projections F -A- X are finite-to-
one. In the finite type case the infinitely iterated graph F^o can be viewed
as a 2m-dimensional (m dime T dimcX) compact set 'foliated' by
complex m-dimensional leaves and having Cantor sets as transversal sections.

The holomorphic finite type graphs probably have finite "lov" and entropy
and at least in the Kähler case this can be proved as follows : Denote by
7 G Hn(X xZ;R), n 2m, m — dimcT dimc^C the class dual to [T] and

by 7y+i G Hn(Xk; R) the class induced from 7 by projecting Xk onto the

product of its i-th and (/+ 1) -th factors. Denote by ß G H2(Xk; R) the class

represented by the structural 2-form. One can easily see that

thus "lov" is finite.
In the end, I must admit my inability to prove (or disprove) the inequality

h(V) > lov T even when T is a graph of an endomorphism. (Of course, I
mean here only the holomorphic case. For smooth endomorphisms, the situation
h(J) 0, lov/ > 0 occurs already for maps S1 -G S1 and, probably, for
higher dimensions the opposite: h(f) > 0, lov/ 0 can also happen.)
The inequality h(T) > lov T reminds one of the Shub entropy conjecture

I [5] proposing a lower estimate for the entropy in homological terms. In the
I complex-analytic context, one has more homology theories to provide further
I speculations.

k-1

1

There are some in the Appendix.
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