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shows that ¥ commutes with xpx~'y~! in the tile path group. Then Theorem
6.1 (a) shows that 7(7) = Z/9Z. This means that the tile homotopy group
only detects area, modulo 9.

On the other hand, we can easily show that if T tiles a rectangle, then
both sides must be even. Consider the ways that a tile can touch the edge of
a rectangle.

FIGURE 6.9

Tiles along an edge of a rectangle

We see that the first two possibilities cannot occur, so each tile that touches
the edge does so along an even length. Therefore, each edge of the rectangle
has even length. In fact, it is not much harder to show that if 7 tiles an
m X n rectangle, then both m and n are multiples of 6. A straightforward
argument shows that every tiling of a quadrant by 7 is a union of 6 X 6
squares, which implies the result.

7. APPENDIX : FURTHER EXAMPLES

Here we give some more tiling restrictions we have found using the tile
homotopy technique. In each case, there are signed tilings that show that the
result cannot be obtained by tile homology methods, and there are tilings
that show that the result is non-vacuous. Further details will be published
elsewhere.

THEOREM 7.1. Let T = {} where all orientations are allowed.

(@) If T tiles an m x n rectangle, then either m or n is a multiple of 4.
(b) A 1 x 6 rectangle has a signed tiling by T .

THEOREM 7.2. Let T = { : I:JI—|}, where all orientations are

allowed.

(@) If T tiles an m X n rectangle, then mn is a multiple of 4.
(b) A 1 X 6 rectangle has a signed tiling by T .
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THEOREM 7.3. Let T = {i} where rotations are permitted, but

reflections are not.
(@) If T tiles an m X n rectangle, then mn is even.
(b) A 1 X5 rectangle has a signed tiling by T .

REMARK 7.4. It is easy to show that if 7 tiles a rectangle, then both
sides are multiples of 5. Also, Yuri Aksyonov [1] has given a clever geometric
proof that one side must be a multiple of 10.

THEOREM 7.5. Let T ={[__ |, , , } where all

orientations are allowed.
(@) If T tiles an m X n rectangle, then one of m or n is a multiple of 4.
(b) A 1 x 2 rectangle has a signed tiling by T .

THEOREM 7.6. Let

ik

where all orientations are allowed.
(a) If T tiles an m X n rectangle, then one of m or n is a multiple of 4.
(b) A 1 x 2 rectangle has a signed tiling by T .

| THEOREM 7.7. Let T = { I+ b * u
“ # i 1 , where all orientations are allowed.

(a) If T tiles an m X n rectangle, then mn is a multiple of 4.
(b) A 1 x 2 rectangle has a signed tiling by T .

THEOREM 7.8. Let T = { , [ i [ 1}, where all orientations

are allowed.
(a) If T tiles an m x n rectangle, then one of m or n is a multiple of 6.

(b) A 2 x 2 square has a signed tiling by T .
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THEOREM 7.9. Let T = {rJ? :

allowed.
(@) If T tiles an m x n rectangle, then either m is a multiple of 3 or n
is a multiple of 6. '

}, where all orientations are

(b) A 1 x 1 square has a signed tiling by T .

THEOREM 7.10. LetT:{,,rg — T T |},Where

all orientations are allowed.

(a) If T tiles an m X n rectangle, then one of m or n is a multiple of 8.
(b) A 1 x 1 square has a signed tiling by T .

THEOREM 7.11. Let T ={[__ i ], , }, where all

orientations are allowed.
(a) If T tiles an m x n rectangle, then one of m or n is a multiple of 5.
(b) A 1 x 1 square has a signed tiling by T .

THEOREM 7.12. Let T ={[_ i ], } where all orientations

are allowed.
(@) If T tiles an m X n rectangle, then one of m or n is a multiple of 4.
(b) A 1 x 2 rectangle has a signed tiling by T .

THEOREM 7.13. Let T ={[_ i i |, ,}, where all orien-

tations are allowed.

() If T tiles an m X n rectangle, then mn is a multiple of 4.
(b) A 1 x 2 rectangle has a signed tiling by T .

THEOREM 7.14. Let T:{,Ls Pl |,}, where all

orientations are allowed.

(@) If T tiles an m X n rectangle, then one of m or n is a multiple of 6.
(b) A 1 x 1 square has a signed tiling by T .
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THEOREM 7.15. Let T ={[ i i [ l,,}, where

all orientations are allowed.

(@) If T tiles an m x n rectangle, then one of m or n is a multiple of 6.
(b) A 2 x 3 rectangle has a signed tiling by T .

THEOREM 7.16. Let T ={ / /> ./ \}, where all orientations are

allowed.
(@) If T tiles a triangle of side n, then n is a multiple of 8.
(b) A triangle of side 4 has a signed tiling by T .

REMARK 7.17. That T tiles any triangle is quite interesting. Karl Scherer
[15, 2.6 D] has found a tiling of a side 32 triangle by 7 .
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