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§ —26°
(4 —0)(1+2))
ce qui est licite si I’on suppose § > 1/2. En reportant dans (17), il vient

r=u" avec n=

2
)] <€ U 4 5T/ E=DAH2] o 152/(1428) o yn8e
car le second terme est négligeable.

Nous avons ainsi établi le théoreme 1.4.

7. UNE QUESTION DE MONTGOMERY
Montgomery a posé dans [12] la question suivante (probleme 45):
Existe-t-il un nombre normal a quotients partiels bornés ?

DEFINITION 7.1. Un nombre x € [0,1) est normal en base g oll g est
un entier g > 2 si et seulement si la suite (¢"x) est équirépartiec modulo 1,
ce qui, via le critere de Weyl, s’écrit:

.1 fos
Vk#0, 11}511N};ve(kq x)=0.

Le théoreme de Borel €tablit que si g > 2, presque tout nombre (au sens
de la mesure de Lebesgue) est normal en base g. C’est le théoreme ergodique
appliqué a la transformation x € [0,1) — gx mod 1. Qu’en est-il en restriction
a un sous-ensemble de nombres irrationnels de [0, 1) ? Un outil est le suivant:

THEOREME 7.2 (Davenport-Erdés-LeVeque). Soit (s,) une suite d’entiers
et soit . une mesure de probabilité portée par [0,1) telle que

N
Z % Z ﬂ(k(sn - Sm)) < 00,
1

N>1 m,n=
pour tout entier k # 0, alors pour p-presque tout x € [0,1), la suite (s,x)
est équirépartie modulo 1.

Démonstration. Fixons k # 0. Notons Syi(x) = 5>,y elks.x), et
Iy = f |SN,k(x)|2d,u(x). L’hypothese n’est autre que

Vi .
Z]i\;ﬁ<+oo, Vk+£0.

N>1
Nous utilisons un lemme classique sur les séries:




FRACTIONS CONTINUES A QUOTIENTS RESTREINTS 353

LEMME 7.3. Soit (x,) une suite de réels > 0 telle que ), q%n/n < 00.
Alors il existe une suite d’entiers (N,) telle que:

a) ». xy, < 00;
b) lim, N,.1/N, = 1.

Nous omettons provisoirement 1’indice k et nous appliquons le lemme a
la suite (Iy). Il existe une suite (N,) telle que

ZIN,. = /Z S, () P dpu(x) < .

En particulier, ) |SN,,(x)|2 < 0o p-presque partout et Sy (x) — 0 p-presque
partout. Maintenant nous interpolons:

Si N, < N < N,iq, on a: NSy — NSy, = ZNr<n<N e(ks,x) et
INSy — N:eSN, | < 3oy <nen 1 =N = Ny < Npyy — N, de sorte que

N,
1= N, et [Sv@)] < Sy, ()] + +}V

Par la propriété b) du lemme, Sy(x) tend vers O pour p-presque tout x,
ce qui prouve l’équirépartition modulo 1 de la suite (s,x) pour p-presque
tout x. [

COROLLAIRE 7.4. Soit X un ensemble de réels portant une mesure de
probabilité | telle que [(n) = 0(|n|_5) ou 6 > 0.

Alors, pour toute suite (s,) Strictement croissante d’entiers, la suite (s,x)
est équirépartie modulo 1 pour p-presque tout x € X.

Démonstration. 1l suffit de vérifier les hypothéses du théoreme 7.2 avec
s, et u la mesure portée par X. Or si k #0,

N
o k(s —sa) =N+ > filkisy — sw))
m,n=1 m,n<N, m#n
SN+C > [ksy—sw)|~°
m,n<N, m#n
N m-—1
SN+2C) ) sn —sa)l .
m=2 n=1
Lorsquem>n Sm = Sn = Sm — Sm—1+ Sm—1— "+ Sp41 — S, > m—n, et
N m-—1

Z | k(s — sm))| < N +2C Z Z(m —n)” 9. ; maintenant,

m,n=1 m=2 n=1




354 M. QUEFFELEC ET O. RAMARE

N m—1 N m—1
D22 m=mT =3 %
m=2 n=1 m=2 n=1

N—1
<NY nf=oW*?).
n=1
Finalement -, ¥ Efx,n:l | k(s — sm))| < 0o puisque § > 0.
Nous en déduisons le résultat suivant qui contient celui de Baker:

COROLLAIRE 7.5. Soit A un ensemble fini d’entiers > 1 contenant au

moins deux éléments; il existe une infinit¢ de x € F(A) normal en toute base
des que la dimension de Hausdorff de F(A) est > 1/2.

Démonstration. Soit 1/2 < § < dimy F(A), 0 < & < g5325555

entier > 2. Il résulte du corollaire 7.4 appliqué avec s, = ¢" et u = pgs
la mesure de Kaufman portée par F(.A), donnée par le théoréme 1.4, que
I’ensemble

et g un

N,={x¢€ F(A) normal en base q}

est de mesure pleine pour la mesure de probabilité p. Ainsi u( () N,) =1
922

d’ot le corollaire. []

8. COMMENTAIRES ET QUESTIONS

Les mesures de Kaufman ainsi construites possédent deux propriétés
importantes : le comportement holdérien de la fonction de répartition et le
comportement asymptotique précis de la transformée de Fourier. En fait la
seconde propriété, fondamentale ici, découle en partie de la premiere, mais
le comportement holdérien joue un rdle primordial dans I’approche de la
conjecture de Littlewood par Pollington & Velani [14].

Les ensembles F(A), | A] > 2, sont donc des ensembles de multiplicité
stricte, lorsqu’ils possédent une dimension de Hausdorff > 1/2. On peut se
demander si la borne 1/2 est infranchissable ou si elle reléve au contraire
de la construction. La propriété pour un ensemble d’€tre de multiplicit€ peut
paraitre stable: un résultat fameux de Salem & Zygmund (voir [10]) établit,
pour des ensembles de type Cantor a rapport de dissection &, 1’équivalence:

' 1
E est de multiplicité <= - ¢ S
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