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1. Minimax d'une fonction quadratique à l'infini

1.1 Préliminaires

Soient X un espace topologique, Dn un disque de dimension n, orienté,

et iß: S"-1 —X une application. On considère sur S"-1 dDn l'orientation
induite. On appelle cellule de dimension n le couple an := (Dn,tß). L'espace

que l'on construit en identifiant chaque point x de Sn_1 au point iß(x) est

obtenu en attachant à X la cellule an ; on le note XU an ou bien XU^ Dn.

Un espace est dit cellulaire s'il est obtenu par l'attachement de cellules

(un nombre fini pour chaque dimension) à un nombre fini de points (cellules
de dimension 0). Un espace cellulaire X est un complexe cellulaire si chaque
cellule est attachée à une cellule de dimension plus petite.

Il est bien connu que tout espace cellulaire est homotopiquement équivalent
à un complexe cellulaire, voir par exemple [DNF], vol. III, §4.

Soit X un complexe cellulaire. La réunion des cellules de dimension k < n
est appelée squelette cellulaire de dimension n, que l'on note Xn. On a alors
la suite des squelettes emboîtés

X° C • • • C Xk C • • • C X.

L'espace quotient Xk~l/Xk~2, où Xk~2 est identifié à un point, est un bouquet
de sphères de dimension k - 1. Considérons une cellule ak (Dk, iß) et

l'application

dDkS*"1 ——»Xk~l — Xk~l/Xk~2 —Sf"1,
où 7T,- est la projection sur la i -ème sphère du bouquet. Soit of-1 la cellule
de X correspondant à la sphère Sf-1.

DÉFINITION. On appelle coefficient d'incidence du couple de cellules
crk,ak~l le nombre entier

[ak:of"1] := deg(^;).

Soient E— et / : E->R une fonction de Morse excellente1 avec un
nombre fini de points critiques. D'après le lemme de Morse, autour d'un point

1

Une fonction est de Morse si ses points critiques sont tous non dégénérés, excellente si
les valeurs critiques sont toutes distinctes.
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critique £ de /, il existe un système de coordonnées {£1, tel que:

THÉORÈME 1.1 ([Mil]). Si l'intervalle [a,b] ne contient aucune valeur

critique de f, alors Eb et Ea sont difféomorphes.

THÉORÈME 1.2 ([Mil]). Soient c la seule valeur critique dans l'intervalle
[c — c,c + e] et £ le point critique correspondant, d'indice ind(£) i. Alors
Ec+e et Ec se rétractent sur l'espace Ec e U a1 que l'on obtient de Ec e en

attachant à son bord une cellule a1 — (D\$) de dimension i.

Pour £,77 points critiques de /, tels que ind(£) — ind(Ty) 1, on note

[£ : 77] l'indice d'incidence des cellules correspondantes.

Remarque. Les Théorèmes 1.1 et 1.2 sont vrais pour toute fonction
de Morse excellente, dès que le champ gradient est défini et intégrable; par
exemple si la condition de Palais-Smale est vérifiée: toute suite {£,7}/2gn telle

que Vf(tin) —^ 0 pour n—ï 00 et {/(^)}«gn est bornée, admet une sous-suite

convergente.

Soit b > 0 un nombre réel assez grand pour que l'intervalle ]—b,b[
contienne toutes les valeurs critiques de / On déduit du Théorème 1.1 que
Ex ~ E~b pour À < — b et Ex ~ Eb pour À > b. On note alors E±0° := E±b.

Soit {£1, •• ,£#(&)} l'ensemble des points critiques d'indice k de /,
ordonnés selon leur valeur critique : /(£*)

DÉFINITION. Le complexe de Morse de / est le complexe cellulaire

(M*,ô*), défini comme suit:

• l'espace m[ des chaînes de dimension k est l'espace des combinaisons

linéaires formelles sur Q des points critiques d'indice k de / :

EfX=Ex K C E|/(0< A}.
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• l'opérateur de bord2) est l'application linéaire d: m[ -a m[_x définie par
la formule

#(k— t)

E : ^ •

m=l

Remarque. D'après les Théorèmes 1.1 et 1.2, l'espace E/E~°° est

un espace cellulaire, homotopiquement équivalent au complexe cellulaire

(Af{,9*). Il s'ensuit que

*(M{, 9*) a H,(E/E-°°) - //*(£, £-°°),
où 7/* dénote le complexe d'homologie réduite à valeurs dans Q.

En suivant une idée de Cerf ([Cer]), S.A. Barannikov a montré que l'on
peut "diagonaliser" les complexes de Morse. C'est pour rendre possible cette

diagonalisation que l'on a défini le complexe de Morse sur Q, bien que le

complexe originel soit à coefficients entiers.

LEMME ALGÉBRIQUE ([Bar]). Dans chaque m[ il existe un changement de

générateurs, représenté par une matrice triangulaire supérieure inversible de

dimension #(k), qui met le complexe de Morse sous forme canonique, c'est-
à-dire que les nouveaux générateurs (ordonnés) {S*}^ (£ l,...,#(k),
k — 1,..., K) vérifient

(1) 92^ 0 ou

Démonstration. Par récurrence : supposons que les générateurs 2soient
du type (1) pour h— ket j <£, et pour h < k et {1,... - 1)}. Soit
Q l'ensemble des indices q tels que Zkq"1 dZkq, pour quelque q* et

P :m{1,,,. ,#(£- 1)} \ Q. L'égalité 9£*+1 EmîEs'écrit donc

«eß pep

Si ap 0 pour tout p e P, le générateur Zf+1 := est

canonique, en effet 92*+, 0. Sinon, soit p0 le plus grand indice dans
tel que aPo ^ 0 :

c> »(&, - E<v4) 1 + E <*&-'
Po>pEP

2) Pour la démonstration du fait que d2 0, voir [DNF], vol. III, §4.
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Remplaçons le générateur Ekpo
1

par Ekpo
1 := 1 + T,po>Pep apEt> '

> qui

est encore de la forme (1), car dEp~l dEkp~l 0. L'égalité (2) s'écrit alors

P0 qQ
ainsi le générateur

+1 := (^+1
Po qeQ

vérifie dEk+l Ek~l.

Remarques.
(1) Tout complexe (avec générateurs ordonnés) admet une forme canonique.

De plus, cette forme est uniquement déterminée par le complexe initial
(voir [Bar]).

(2) Sur les espaces m[ on peut définir un autre opérateur de bord
S : m[ -4 m(_ j par la formule

m

où ß(£k, ^k~1 est le nombre (algébrique) de trajectoires intégrales du champ
de vecteurs F := —V//| V/j2 de à Puisque l'attachement des cellules
ak est induit par la rétraction des espaces Ex le long des trajectoires intégrales
de F, on a [£* : £*-1] / 0 si et seulement s'il existe (au moins) une trajectoire
de F entre les deux points critiques correspondants. Ainsi, d'après le remarque
précédent, les complexes (M{,<9*) et ont la même forme canonique.

1.2 Points critiques incidents, liés et libres

Soit (Af{,9*) le complexe de Morse en forme canonique d'une fonction
de Morse excellente / : E -4 R. A chaque point critique £* correspond
le générateur Ek, c'est-à-dire aJ$> avec a^°

J<C

Définition. On dit que deux points critiques et de / sont

incidents si [£* : £^_1] ^ 0, liés si <9S^ Un point critique est

s'il n'est lié à aucun point critique.
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