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Proposition 10.1 provides a x(r,s) = Bi(A(r, s),A(r,s)) such that this bigon
is r(r,s)-thin. Thus the given (r,s)-chain bigon is §(r, s)-thin, with &(r,s) =
k(r,$)+2A(r,s). By Lemma 11.1, the given forest-stack, which is a (1, 2)-quasi
geodesic metric space, is 26(1, 6)-hyperbolic. [

12. BACK TO MAPPING-TELESCOPES

In this section we elucidate the relationships between forest-stacks and
mapping-telescopes.

12.1 STATEMENT OF THE THEOREM

An R-tree (see [9], [2] among many others) is a metric space such that
any two points are joined by a unique arc and this arc is a geodesic for the
metric. In particular an R-tree is a topological tree. An R-forest is a union
of disjoint R-trees.

LEMMA 12.1. Let (I',dr) be an R-forest and let 1): I" — I be a forest-
map of I'. Let (Ky,f,0,) be the mapping-telescope of (1,1 equipped with
a structure of forest-stack as defined in Section 2. Then there is a horizontal
metric H = (m,),cgp on Ky such that
1. The R-forests (f~'(r),m,) and (f~'(r + 1),m,4+1) are isometric. Each

stratum (f~'(n),m,), n € Z, is isometric to (I, dr).

2. For any real r and any horizontal geodesic g € f~(r), the map

. +1—r] = R"
A t *"'>|0't(9)|r+t

Is monotone.

Such a horizontal metric is called a horizontal dr-metric. The telescopic
metric associated to a horizontal dr-metric is called a mapping-telescope
dr -metric.

Proof. We make each I" x {n}, n € Z, an R-forest isometric to I". We
consider a cover of I' by geodesics of length 1 which intersect only at their
endpoints. Each I" x {n} inherits the same cover. There is a disc D, , in Ky
for each such horizontal geodesic e in I' x {n}. This disc is bounded by e,
Y(e) and the orbit-segments between the endpoints of e and those of (e).
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We foliate this disc by segments with endpoints in, and transverse to, the
orbit-segments in its boundary. Then we assign a length to each such segment
so that the collection of lengths varies continuously and monotonically, from
the length of e to that of 1)(e). We thus obtain a horizontal metric on the
mapping-telescope. Furthermore each stratum f~'(n), n € Z, is isometric
to (I',dr). And the maps denoted by /., in Lemma 12.1 are monotone by
construction. By definition of a mapping-telescope, the discs D, , between
I'x{n} and I"x {n+ 1} are copies of the discs D, , between I' x {n’'} and
I' x {n" + 1}, for any n, n’ in Z. This allows us to choose the horizontal
metric to satisfy the further condition that (f~'(r),m,) be isometric with
(f~Y(r +1),m,y,) for any real number r. []

We now define dynamical properties for R-forest maps.

DEFINITION 12.2. Let (I',dr) be an R-forest. A forest-map 1 of
(I',dr) 1is weakly bi-Lipschitz if there exist 4 > 1 and K > 0 such that

,LLd]"(X, y) 2 dFW(X)a be(y)) 2 -};dr(xy y) — K.

DEFINITION 12.3. Let (I',dr) be an R-forest. A forest-map 1 of (I, dr)
is hyperbolic if it is weakly bi-Lipschitz and there exist A\ > 1, N > 1,
M > 0 such that for any pair of points x, y in I with dr(x,y) > M, either
dr(p" (), ¥ (1)) > Mr(x,y) or dr(xy,yn) > Adr(x,y) for some xy, yy with
PN o) = x, PNw) = y.

A hyperbolic forest-map ¢ of (T',dr) is strongly hyperbolic if, for any pair
of points x, y with dpr(x,y) > M and each connected component containing
both a preimage of x and a preimage of y under 9", there is at least one
pair of such preimages xy, yy for which dr(xy,yy) > Adr(x,y).

If the forest I is a tree then a hyperbolic forest-map is strongly hyperbolic
(similarly we saw that a hyperbolic semi-flow on a forest-stack whose strata
are connected 1is strongly hyperbolic).

Our theorem about mapping-telescopes is

THEOREM 12.4. Let (I',dr) be an R-forest. Let Y be a strongly
hyperbolic forest-map of (I',dr) whose mapping-telescope Ky, is connected.

Then Ky is a Gromov-hyperbolic metric space Jor any mapping-telescope
dr -metric.
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12.2 PROOF OF THEOREM 12.4

LEMMA 12.5. Let (I',dr) be an R-forest. Let ) be a weakly bi-Lipschitz
forest-map of (I',dr). Let (Ky,f,o0:) be the mapping-telescope of (,I),
equipped with a structure of forest-stack as defined in Section 2. Then the
semi-flow (0;),cr+ 1S a bounded-cancellation and bounded-dilatation semi-flow
with respect to any horizontal dr-metric (see Lemma 12.1).

Proof. The horizontal metric ‘H agrees with the metric dr on all the strata
f~Y(n), n € Z (see Lemma 12.1). Consider any horizontal geodesic ¢ in the
stratum f~1(0). If v is weakly bi-Lipschitz with constants py and K, then
for any integer n > 0, we have |[g],|, > Mig|g|0 _KO(;S—I__I + # +...+1).

Since 0 < ﬁ < 1, the sum tends to Mgbjl as n — +oo. Setting A_ = ;15 and
K = Ky M’)‘jl, this proves the inequality of item (1) for horizontal geodesics

in f~'(n), n € Z, and an integer time ¢. For the case in which ¢ is any
positive real number and g € f~!(r), r any real number, just decompose
Ot = O4—E[f] © OE[—(E[r]+1—n)] © OE[s]+1—r- Lhe map o, 1s a homeomorphism
from f~1(r) onto f~!(r+1) for any ¢ € [0, E[r]+1—r). That is, for any real r,
Lg]r+4l,, = lo(@)],, for ¢ € [0, E[r]+1—r). The monotonicity of the maps
l, 4 (see Lemma 12.1, item (2)) implies, for any r and ¢ € [0, E[r] + 1 —7),
that [o:(9)|,,, > ﬁlgl g|,. The conclusion follows. [

LEMMA 12.6. With the assumptions and notation of Lemma 12.5, if the
map P is a (strongly) hyperbolic forest-map of (I',dr) then the semi-flow
(01)secr+ s (strongly) hyperbolic with respect to any horizontal dr-metric.

The proof is similar to that of Lemma 12.5. [

Proof of Theorem 12.4. By Lemmas 12.5 and 12.6, a mapping-telescope
admits a structure of forest-stack (f .f,0:, H) with horizontal metric H such
that the semi-flow (o;),cg+ 1S a strongly hyperbolic semi-flow with respect
to 7. Hence Theorem 4.4 implies Theorem 12.4.  []

13. ABOUT MAPPING-TORUS GROUPS

We first recall the definition of a hyperbolic endomorphism of a group
introduced by Gromov [19].




	12. Back to mapping-telescopes
	12.1 Statement of the theorem
	12.2 Proof of Theorem 12.4


