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A NOTE ON THE HOPF-STIEFEL FUNCTION

by Shalom ELIAHOU *) and Michel KERVAIRE

INTRODUCTION

In the preceding paper of this volume [P], Alain Plagne gives a formula
for the (generalized) Hopf-Stiefel function f3,.

Given a prime number p, and two positive integers r, s, recall that §,(r, s)
is defined as the smallest integer n such that (x4 y)" € (x",y%), where (x,y°)
is the ideal generated by x" and y° in the polynomial ring F,[x,y].

Plagne’s theorem reads

THEOREM 1. Let r,s be positive integers, then [,(r,s) is given by the
Sformula

o wem((Fl )

In [P], this formula is derived as a corollary of a theorem on Additive
Number Theory, Theorem 4, which is the main result of the paper.

Here, we give another proof of Theorem 1 using a purely arithmetical
argument.

Recall from [EK, p.22], where §,(r,s) was introduced, that this function
can be described in terms of the p-adic expansions of » — 1 and s — 1 as
follows.

*) During the preparation of this paper, the first author has partially benefited from a research
contract with the Fonds National Suisse pour la Recherche Scientifique.
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THEOREM 2. Let r—1 = Y o ap and s—1 = Y..5,bip' be the
respective p-adic expansions of r —1 and s — 1, with 0 < a;,b; < p —1
for all i.

Define the integer k as the largest index for which ay + by > p, if any
exists. Otherwise, that is if a;+b; <p—1 for all i >0, set k= —1.

Then, (,(r,s) is determined by

r—1 s—1
o weom (LR )

Although the point of Plagne’s paper is to stress the relationship of his
formula with Additive Number Theory, it is interesting to note that (1) also
admits a direct proof using the above Theorem 2.

This is the content of the next section. In Section 2, we provide a simple
proof of Theorem 2.

1. DERIVING THEOREM 1 FROM THEOREM 2

It is very easy to understand the relationship of the floor-function |£], or
integral part of &, appearing in Theorem 2, with the ceiling-function [£], the
smallest integer at least as big as ¢, used in formula (1).

The main object of this section will be to locate the minimum over ¢ > 0
of the expression ([ﬁ] + L—fz“ — 1) p° and to show that this minimum is
attained at / = k+ 1 with k as defined in Theorem 2.

For every index ¢ > 0, we have

L+ Y eap _ 1+5 50 -Dp
P’ - p’ N
Since r =1+ .5 ap', it follows that

v .
FAIS Sy

i>0

0< 1.

-1 £—1 ;
.. ~ap _(=Dp' £_
Similarly, we have 0 < Z’;% P < Z‘=°pe = £ pgl <1, and
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