Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 49 (2003)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: UNE PREUVE DU THÉORÈME DE LIOUVILLE EN GÉOMÉTRIE

CONFORME DANS LE CAS ANALYTIQUE

Autor: Frances, Charles

Kapitel: 2. Invariance conforme des géodésiques isotropes

DOI: https://doi.org/10.5169/seals-66680

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Nous renvoyons à [Sp] (vol. 3, p. 310) pour une preuve de ce lemme.

Précisons que le cœur de la démonstration du théorème de Liouville réside vraiment dans la première étape, consistant à prouver qu'un difféomorphisme conforme envoie localement les (n-1)-sphères sur des (n-1)-sphères. Ce résultat est généralement obtenu par des calculs et il est difficile d'isoler une raison conceptuelle pour laquelle il est vrai. Aussi se propose-t-on de faire le lien entre cette propriété et un résultat profond mais *a priori* sans rapport: l'invariance conforme des géodésiques isotropes en géométrie pseudoriemannienne ou riemannienne complexe.

Notre preuve s'applique à des transformations conformes analytiques entre ouverts de \mathbb{R}^n . Les preuves classiques (par exemple [M]) requièrent en général une régularité C^3 et on peut trouver dans [H] une preuve plus difficile qui traite le cas des applications de classe C^1 .

2. Invariance conforme des géodésiques isotropes

Rappelons qu'une métrique pseudo-riemannienne g sur une variété M est la donnée d'une forme quadratique non dégénérée de signature (p,q) sur chaque espace tangent à M. Nous supposons par la suite que g n'est pas riemannienne, c'est-à-dire que ni p ni q ne sont nuls.

Une géodésique $t \mapsto c(t)$ pour la métrique g est qualifiée d'isotrope si pour tout t où c(t) est défini, on a $g_{c(t)}(c'(t),c'(t))=0$. Si l'on se donne une métrique g' dans la classe conforme de g (c'est à dire $g'=e^{\sigma}g$ pour σ une fonction de M dans \mathbf{R} de même régularité que g), les géodésiques de g' et de g n'ont en général aucun rapport. Néanmoins, on peut montrer le

Théorème 3. Soit (M,g) une variété pseudo-riemannienne; alors les géodésiques isotropes sont les mêmes, en tant que lieux géométriques, pour toutes les métriques de la classe conforme de g.

Remarquons que ce théorème ne dit pas que les géodésiques isotropes sont les mêmes en tant que courbes paramétrées.

Preuve. Nous rappelons sommairement comment on peut voir le flot géodésique sur une variété comme un flot hamiltonien (le lecteur souhaitant plus de détails peut se référer à [AM]). On note T^*M le fibré cotangent de M et ω la forme symplectique standard sur T^*M . La donnée d'une

métrique pseudo-riemannienne g sur M fournit en tout point x de M un isomorphisme i_x de T_x^*M dans T_xM . On peut alors associer à la métrique gun Hamiltonien H sur T^*M donné par $H(x,\zeta)=g_x(i_x(\zeta),i_x(\zeta))$, ainsi qu'un gradient symplectique X vérifiant $d_{(x,\zeta)}H(\cdot)=\omega_{(x,\zeta)}(X,\cdot)$. Les projections sur M des trajectoires du flot ϕ^t associé au champ X sont les géodésiques de la métrique q. On peut faire la même construction avec une métrique g' dans la classe conforme de g, et on obtient ainsi un Hamiltonien H' et un gradient symplectique X'. Comme g et g' sont conformément équivalentes, pour tout x dans M et tout ζ dans T_x^*M , les vecteurs $i_x(\zeta)$ et $i_x'(\zeta)$ sont colinéaires, et par conséquent, les lieux d'annulation de H et H' sont les mêmes. Ils consistent en une hypersurface singulière $\Sigma_0 \subset T^*M$, qui est laissée invariante par l'action des flots ϕ^t et ${\phi'}^t$. Notons que les points où Σ_0 est régulière sont exactement le complémentaire dans Σ_0 de la section nulle. Maintenant, on remarque qu'en un point (x,ζ) où Σ_0 est régulière, les vecteurs $X(x,\zeta)$ et $X'(x,\zeta)$ sont tous deux orthogonaux, pour la forme ω , à l'espace tangent en (x,ζ) à Σ_0 . Comme ω est non dégénérée et que $T_{(x,\zeta)}\Sigma_0$ est de codimension 1 dans $T_{(x,\zeta)}(T^{\star}M)$, c'est qu'ils sont colinéaires. On en conclut que X et X'sont toujours colinéaires sur Σ_0 puisqu'ils le sont sur un ouvert dense de Σ_0 . Par conséquent, les trajectoires des flots ϕ^t et ${\phi'}^t$ sur Σ_0 sont identiques en tant que lieux géométriques, ce qui achève la preuve.

On peut maintenant énoncer le

COROLLAIRE 4. Une application conforme entre deux variétés pseudoriemanniennes (resp. entre deux variétés complexes munies de structures riemanniennes holomorphes) M et N envoie les géodésiques isotropes de M sur les géodésiques isotropes de N.