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268 F. GAUTERO

1. AN ILLUSTRATION

We start by considering a very particular case of our theorem. We feel
that this simple example might serve as an illustration of the later work. We
hope that this will help the reader to understand the contents and ideas of the
paper. Our aim is to prove the Affirmation stated below.

We choose a real number A > 1. We denote by d, the usual distance
on R. For any real r, we set d, = Mldy. The length |I|  of a real interval I
is the distance, with respect to d,, between the endpoints of 7. We consider
the plane R?>. We denote by p,: R> — R the projection on the x-axis and
by py: R* — R the projection on the y-axis. We denote by V, = p7!(a) the
vertical line through a point a. Vertical lines (resp. horizontal lines pj L)
are equipped with the distance dy (resp. with the distance d,). Lengths of
horizontal and vertical intervals are measured with respect to the distance
defined on the corresponding line. A felescopic path is a concatenation of non
degenerate vertical and horizontal intervals, where ‘non degenerate’ means not
reduced to a point. The horizontal (resp. vertical) length of a telescopic path
1s the sum of the horizontal (resp.vertical) lengths of its maximal horizontal
(resp. vertical) intervals. The telescopic length of a telescopic path is the sum
of its horizontal and vertical lengths. The telescopic distance between two
points in R? is the infimum of the telescopic lengths of the telescopic paths
between these two points. We wish to prove the following result:

AFFIRMATION. The plane R? equipped with the telescopic distance is a
Gromov hyperbolic geodesic metric space.

STEP 1: COMPUTATION OF THE GEODESICS. Let a, b be any two points
in R?. Let I, be the compact interval of the x-axis bounded by the projections
px(a) and p,(b) of a and b. Let g be any telescopic geodesic from a to b.
On the one hand, the length of a telescopic path is never shorter than the
length of its projection on a vertical line, so that g lies between V, and
Vp. On the other hand, if ¢ € I, the vertical line V, separates a from b,
so that g intersects V.. Therefore the telescopic geodesic g intersects all
the vertical lines separating a from b, and no other vertical line. Given a
telescopic path containing one vertical interval and two horizontal intervals
I, I' at different heights, there exists a stricly shorter telescopic path with the
same endpoints. It is obtained by replacing one of the horizontal intervals, say
I, by another horizontal interval which intersects the same vertical lines as 7,
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and which lies at the same height as I'. Thus the telescopic geodesic g is the
concatenation of at most one non degenerate horizontal interval with at most
two non degenerate vertical intervals. Furthermore, any horizontal interval on
the x-axis minimizes the horizontal distance between the vertical lines passing
through its endpoints. Thus, if py(a)py(b) < O then g is the concatenation
of the horizontal interval I on the x-axis which connects V, and Vj, with
the vertical intervals on 'V, and V), which connect a and b to the endpoints
of 1.

In order to compute the geodesics when py(a)p,(b) > 0, we distinguish
two cases:

CASE A: 0 < py(a) = py(b). Then g is the concatenation of two
vertical intervals of vertical lengths r > 0 with one horizontal interval I.
The horizontal length of I is equal to Xdpy(a)(a, b) if p,(I) > py(a) and
to A 'd, wy(a,b) if py(I) < pya) and py,(I) > 0. Indeed, we recall that
horizontal intervals on the x-axis are dilated both in the future and in the
past. We set (1) = 2t + A”'d, (4(a,b). Let t, be any real number such that
0 <1, <py(b) and f(t,) = mino<,<p ) f(#). From what precedes, g is the
concatenation of two vertical intervals of length #, with a horizontal interval

on the horizontal line Py 1(py(b) —t,). The function f(¢) attains its minimum

In((In Ay @y(@,b) /2 . _ .
nn )1,2&)(61 Ui ). Therefore t, = min(max(t,,0), py(b)) is unique. We

have thus proved that there exists a unique telescopic geodesic between a
and b. Its telescopic length is equal to f(z,).

at ¢, =

We now distinguish three subcases.

Case (0): t, > to. The horizontal distance between a and b is so short
that the horizontal interval between a and b realizes the telescopic distance.
Indeed ?, > t, = t, = 0. The horizontal distance between a and b, which
1s the horizontal length of the horizontal interval I in the above notation, is

smaller than % i
n

Case (1): t, = 1,. The optimal case. The horizontal interval I of g lies on

the horizontal line p,(a) — t,. The horizontal length of I is % The vertical
intervals in g have vertical lengths f, .

Case (2): t, < t,. The horizontal distance between a and b is too large
with respect to the height of the horizontal line through a and b. Then
the horizontal interval 7 of g lies on the x-axis. The horizontal length of

I is equal to A\™»9d, (;y(a,b) > % . It depends on dy,(@(a,b) and can be
arbitrarily large.
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CASE B: 0 < p,(a) # py(b). Without loss of generality we assume that
py(a) < py(b). We consider the point ¢ =V, Npy 1(py(b)). If t, > py(b)—py(a),
the telescopic geodesic from ¢ to b computed in Case A admits a subpath
from a to b. This subpath is the unique telescopic geodesic between a and b.
If z, < py(b) — py(a), then the unique telescopic geodesic between a and b
1s the concatenation of the horizontal interval between a and the vertical
through b, with the vertical segment between this interval and the point b.

The same arguments apply to the case where both a and b lie in the
negative half-plane. This concludes the computations of the geodesics.

STEP 2: GEODESIC TRIANGLES ARE THIN. Let A be any geodesic triangle
in the upper half-plane. Let gi, g», g3 be the sides of A. Let #.(g;) and
t,(g;) be the non negative real numbers for g; defined above. Let [, I, I3,
pyI3) > py(I) > py(I1), be the horizontal geodesics respectively in g, ¢»
and gs.

Case (1): 12.(g1) > 1o(g1). Then 1.(g2) > 1o(92) and £.(g3) = 1o(g3).
Therefore IIilp).([,-) < 1%)\’ i = 1,2,3. The vertical segment of ¢, between I3

and I, is at horizontal distance smaller than % from a vertical segment
in g;. Because of the uniform contraction in A7, this implies that I, is at
In2

vertical distance smaller than 5 from ;. Therefore the union of /; with the
two orbit-segments between its endpoints and the horizontal line p; Hpy())
is at telescopic distance smaller than Ilfll—i + % from I,. All the points of A
not considered up to now belong to at least two distinct sides.

Case (2): t.(g1) < t5(g1). Then py(l;) =0, 1.e. [; lies on the x-axis.

1. If t*(QZ) == ZO(QZ) and t*(g3) - to(g3), then Ililpy(l,-) - ﬁx for i = 2;3
Thus |11}, < 5. We conclude as in Case (1).

2. If both t.(g2) > t.(g2) and £.(g3) > #5(g3) then both I, and I lie on
the x-axis so that I; = I, U I3. Then any point in A belongs to at least two
distinct sides.

3. If only t,(g3) > to(g3) then I, C I;. Let I} C I; be the complement of
L in I;. Then |Ij|, < = . The same inequality is satisfied for the horizontal
distance between the vertical segments connecting the endpoints of I} to I.

This concludes Case (2).

The case where A lies in the negative half-plane is treated in the same
way. The other cases are dealt with using similar, but simpler, arguments than
above. We leave them as an exercise for the reader.
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REMARK 1.1. The above computations fail, and the space is no longer
Gromov-hyperbolic, if one replaces d, = APldy by d, = P(|y|)dy, where P(.)
is a polynomial function of y. Indeed, in this case, the length of the horizontal
interval between the two considered orbits, evaluated at the height where the
minimum of the length-function f(¢) is attained, depends, even in the optimal
case, on the horizontal length of the interval connecting one point to the orbit
of the other. Whereas in the exponential case it equals In‘ZX unless 1t belongs

to the horizontal axis.

2. MAPPING-TELESCOPES AND FOREST-STACKS

Let X be a topological space. Call X a topological tree if there exists a
unique arc between any two points in X. A topological forest is a union of
disjoint topological trees. By ‘arc’ we mean the image of an injective path.
A path in X is a continuous map from a bounded interval of the real line
into X. A forest-map is a continuous map of a topological forest into itself.

~ DEFINITION 2.1. Let ¢: X — X be a forest-map. The mapping-telescope

Ky of (1,X) is the topological space resulting from Kx = | | X x [n,n+ 1]
nez
by the identification of each point (x,n+ 1) € X x [n,n+ 1] with the point

WxX),n+1)eXx[n+1,n+2].

Let us examine somewhat more closely the topology of these mapping-
telescopes.

For any integer n € Z, for any (x,r) € X X [n,n + 1], for any real
number ¢ > 0, we define ,((x,r)) as the point (pFU—CHI=NI+1xy » 4 4y in
X X [E[r + ], E[r +t] + 1], where E[r] denotes the integer part of r. The
map &, is defined on Ky (the disjoint union of the X x [n,n+ 1]) for every
t > 0. Moreover &;,p = 5,0 6.

If a=@,n+1)€Xx[n+1,n+2], then 5a) = W), n+141) e
[n+ 1+ E[t],E[t] +n + 2]. Whereas if g = (x,n+1) € X X [n,n+ 1] then
Gi(a) = W (), n+1+1) € X x [n+1+E[t], E[f] +-n+2], which is equal to
g(b) with b = (p(x),n+1) € X x[n+1,n+2]. Therefore (0t);er+ descends to
the mapping-telescope Ky, where it defines a one parameter family (0y),cp+
of continuous maps of K, . This family depends continuously on the parameter
t € R, It satisfies furthermore oo = Idg » and o4y = 0,004 . Such a family
is called a semi-flow on K.




	1. An illustration

