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For R a fixed set of representatives for G/H, the map
or: Indjj(S5) — Sp
f = {f(r)}rER

is well-defined by H-equivariance of the elements of S5 and one checks
that it defines a G-equivariant isometric bijection. Similarly for the adjoint
operators.

The following example is a particular case of the previous lemma.

EXAMPLE 3.2. Let us look at the case M = M x G. A section
s € CfO(M,W*E) is an element § = {Sg}geG where s, € C*(M,E) and
sq = 0 for all but finitely many g¢’s. Note that L*(M,7*E) can be identified
with 2(G) ® L*(M,E). Now

D5 = {Dsy} o € C°(M,n*F)

and hence Sz may be identified with 2(G) @ Sp = 2(G)?, where
d = dimc(Sp). In this identification the projection P onto S becomes the
identity in My(N(G)) and thus

d
dimg(S5) = ) _ (e,e) = d = dimc(Sp) .

i=1

A similar argument for D* shows that in this case not only does the L?-Index
of D coincide with the Index of D, but also the individual terms of the
difference correspond to each other. This 1s not the case in general, see
Example 2.2.

4. ON K-HOMOLOGY

Many ideas of this section go back to the seminal article by Baum and
Connes [3], which has been circulating for many years and has only recently
been published.

An elliptic pseudo-differential operator D on the closed manifold M can
also be used to define an element [D] € K¢(M), the K-homology of M,
and according to Baum and Douglas [4], all elements of Ky(M) are of
the form [D]. The index defined in Section 2 extends to a well-defined
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homomorphism (cf. [4])
Index: Ko(M) — Z.,

such that Index([D]) = Index(D). On the other hand, the projection
pr: M — {pt} induces, after identifying Ko({pt}) with Z, a homomorphism

(%) pr,: Ko(M) — Z,
which, as explained in [4], satisfies
pr,.([D]) = Index([D]).

More generally (cf. [4]), for a not necessarily finite CW-complex X, every
x € Ko(X) is of the form f,[D] for some f: M — X, and Ky(X) is obtained
as a colimit over Ky(M,), where the M, form a directed system consisting
of closed Riemannian manifolds (these homology groups Ky(X) are naturally
isomorphic to the ones defined using the Bott spectrum; sometimes, they are
referred to as K-homology groups with compact supports). The index map
from above extends to a homomorphism

Index: Ko(X) — Z.,

such that Index(x) = Index([D]) if x = f.[D], with f: M — X.

We now consider the case of X = BG, the classifying space of the discrete
group G, and obtain thus for any f: M — BG a commutative diagram

K() ( M) Index 7

| |

Ko(BG) -2, 7.

Note that (x) from above implies the following naturality property for the
index homomorphism.

LEMMA 4.1. For any homomorphism @: H — G one has a commutative
diagram

Index

Ko(BH) —— Z

(Be)s l “

Ko(BG) 2, 7. O
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We now turn to the L2-index of Section 2. It extends to a homomorphism
Indexg: Ko(BG) -+ R

as follows. Each x € Ko(BG) is of the form f.(y) for some y = [D] € Ko(M),
f: M — BG, M a closed smooth manifold and D an elliptic operator on
M. Let D be the lifted operator to M, the G-covering space induced by
f: M — BG. Then put

Indexg(x) = IndexG(ﬁ) .

One checks that Indexg(x) is indeed well-defined, either by direct computation,
or by identifying it with 7(x), where 7 denotes the composite of the assembly
map Ko(BG) — Ko(C}G) with the natural trace Ko(C*G) — R (for this latter
point of view, see Higson-Roe [10]; for a discussion of the assembly map see
e.g. Kasparov [12], or Valette [14]). The following naturality property of this
index map is a consequence of Lemma 3.1.

LEMMA 4.2. For H < G the following diagram commutes :

Indexy

Ko(BH) R
| |
Ko(BG) M9, R. O

Atiyah’s L?-Index Theorem 2.1 for a given G can now be expressed as
the statement (as already observed in [10])

Indexg = Index: Ko(BG) — R.

5. ALGEBRAIC PROOF OF ATIYAH’S L?-INDEX THEOREM

Recall that a group A is said to be acyclic if H.(BA,Z) =0 for * > 0.
For G a countable group, there exists an embedding G — A into a countable
acyclic group Ag. There are many constructions of such a group A available
in the literature, see for instance Kan-Thurston [11, Proposition 3.5], Berrick-
Varadarajan [5] or Berrick-Chatterji-Mislin [6]; these different constructions
are to be compared in Berrick’s forthcoming work [7]. It follows that the
suspension XBAg is contractible, and therefore the inclusion {e} — Ag
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