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Ce théoreme est la conséquence facile du théoréme suivant, qui annonce
’existence d’une mesure de Kaufman sur F(A) pour un tel alphabet.

THEOREME 1.4. Soit A un ensemble fini d’entiers > 1. Nous supposons
que A contient au moins deux éléments et que la dimension de Hausdorff de
I’ensemble F(A) est > % Soit € > 0 et —é- < § < dimy F(A). Il existe une
mesure de probabilité p sur F(A) et deux constantes > 0, ci et ¢y, telles
que

e pour tout borélien S, u(S) < cj(diam $) ;

4| < a1+ Jul)7H avee n = 20520

® pour tout u > O, m_—é)

L article est construit comme suit: apres des rappels sur le développement
en fraction continue et les ensembles F(A), nous reprenons en grande partie
la construction de Kaufman en 1’adaptant a notre propos pour établir le
théoréme 1.4, puis nous en déduisons le théoreme 1.3 par une démarche
classique désormais (voir aussi [13],[14]) et qu’utilisait déja Baker [1].

2. LES ENSEMBLES F(A)

Soit N > 2 et A un ensemble fini d’entiers C [1,...,N] contenant au
moins deux éléments.

Nous nous intéressons a I’ensemble F(A) des irrationnels de [0,1) dont
le développement en fraction continue [0;ay,a,,...] est tel que a; € A pour
tout i > 1.

Si x =[0:a1,a,,...] € F(A), notons gjfg =5 = [0a1,a,...,] la
k-ieme réduite de x; nous avons ainsi Pp =0, Qp =1, Py =1 et Q; =q;.

Pour exprimer les P, et O, il est commode d’introduire les matrices de

déterminant —1
0 1
A;(x) = )
) (1 a,-<x>>

) M) 1= Ay(x) . . . A (x) = (P ;;(lg) Qg(lg)> .

Il ressort de ces récurrences que Pi(x) et Or(x) sont en fait des polyndmes

en ai,...,ax, liés par la relation Py_)Qy — Qx_1Pr = (—1)*. Par transposition
dans (1), 1l vient:

Alors
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2) Owlar, .. .,ar) = Orla, - - .,a1),
et

3) Pi(ay,...,ax) = Qr—1(ax,...,a2),
d’ou

@) Qé: _[O:ap....ai].

Cela signifie que deux dénominateurs consécutifs contiennent tout le passé de
la fraction continue.

Les réduites fournissent de bonnes approximations rationnelles de x et
nous retiendrons

k
5) P (—1)

T Or 1Ok + O 1)k

N

ou
X1 = [y 15 Arg2y - - - 1
Enfin remarquons que F(A) admet un plus petit et un plus grand élément:’
le plus petit admet comme fraction continue la suite périodique répétant N,a
ou N est le plus grand élément de A et a est son plus petit élément, alors
que le plus grand lui répete a,N. Il s’agit donc, pour le plus petit élément,
de la solution de

1
N+ —)=1
X +x+a)

2N < 2N
2aN+1 — 2N+1°

qui est > w5 > Nﬂrl alors que le plus grand est <

L’ensemble F(A) peut étre regardé comme sous-ensemble de R, avec
sa topologie et sa mesure, ce que nous nommerons la structure linéaire,
ou bien comme un produit infini AN qui est naturellement muni d’une
structure profinie. Les morphismes qui passent d’une structure a 1’autre sont
respectivement et trivialement 1’application qui & un nombre .associe son
développement en fraction continue et I’application qui a un tel développement
associe un réel... . Ces deux structures se ressemblent beaucoup !

LEMME 2.1. Soit x et y de F(A). Supposons a;,(x) = a;(y) pour i variant
de 1 a k. Alors
‘ N2
x—vy| < —
s e
et si agy1(x) # ar41(y), alors
1

NN + 2)Q41(x)?

x—y| >
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Démonstration. En effet, puisque Q;(x) = Q;(y) := G, 1 <j<k,par (5),

(=D k1 — Xet1)

B Or10k + Ok—1) k1 Ok + Q1)

xX—=Y

et

en Qs+ Qe < (75 1) (@ (00 + Q) < NV + 20 ()

: alors que d’un autre coté

1
Vit1Qk + Ox—1 2 ) (ar+10)0k + Ok—1) > NQH—I(X) :

Apt1(x
Il nous reste & minorer |yir1 — X¢+1| sous la seule hypothese a1 1(x) # ap+1(y)
(mais aussi 1/x; € F(N)). Le pire qui puisse arriver est que x4 soit le plus
grand possible par rapport & ax41(x), que ax1(y) = arr1(x) + 1 et que yri
soit le plus petit possible. Leur différence serait alors minorée par

| VN2 + 1 V2 >1

N+1 +N+1_N

car 1 — Y >0 6i N> 1, et NV22>N+1 si N> 3. 1l suffit alors de

vérifier I’inégalité pour N =2. []

LEMME 2.2. Soit t et h > 0 des réels. Supposons que h < (N +2)~!.
Alors il existe £ >1 et @y,...,a; des entiers entre 1 et N tels que

t<x<itt+h=a®=a Ge{l,....0}).

De plus Qu(@y,...,a;) > (N+2)"'h=1/2,

Démonstration. La preuve est essentiellement contenue dans le lemme
1 précédent. En effet, comme (k4 est borné, l’existence ne pose pas de
‘ probleme. Il nous suffit alors de prendre ¢ maximal, i.e. tel qu’il existe deux
points x et y avec agii(x) # agyr1(y) et le lemme précédent conclut.  []

Si nous désignons par T le shift unilatéral sur F(A) considéré comme
sous-ensemble de AN, de sorte que Tx :=T[0;a;,a;,...]1 =[0;a,as,...],
la fonction (n,x) — M,(x) est un cobord matriciel pour 7 au sens ou:

My o(x) = Mp(T* )M (x) ,
soit

(P kre—1(0)  Orye—1 (x))

_ [(Pe—1(T*x) Q£—1(Tkx)> <Pk—1(x) Or—1(%)
Pryo(x) Ok+0(x) 7

- ( Po(T*x) Q(T*x) Pi(x) Or(x)
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d’ou I'on tire
Qire(x) = Po(T*0)Qk—1(x) + Qe(T* 1) Q%)
d’ot I’encadrement, puisque P; < (; pour tout j,

©) [ < Ok+-0(x) <5
T Qu(T*x)Q(x) —

En nous souvenant que P;(x) et Q;(x) ne dépendent que des j premiers
quotients partiels de x, nous avons montré

LEMME 2.3. Si tous les a; sont au moins égaux a 1, la différence

Log Qxye(ay, . . ., akve) — Log Oxlay, . . . ,ar) — Log Qu(ak+1, - - -, Qkte)

est en valeur absolue inférieure a Log?2.

3. DIMENSION DE HAUSDORFF

Les ensembles F(A) sont tous de mesure de Lebesgue nulle, mais de
dimension de Hausdorff > 0. Good [4] a montré le résultat suivant:

THEOREME 3.1. Soit A un ensemble fini d’entiers > 0. Soit m > 1. Soit
am, A > 0 la solution en o de

-2
Z Z Qm(al,az,...,am) “=1.
alEA amEA

Alors la limite de o, o4 quand m tend vers 'infini existe et vaut la dimension
de Hausdorff de F(A) muni de la métrique induite par la distance sur R.

L]

En fait, la preuve qui mene a ce résultat est tres instructive. En notant

@)=Y ... > Owlai,a,...,an) """

amEeA an€A

nous constatons en utilisant (6) que %, ¢(a) < 2, (@)Zp(ev). Par ailleurs X, ()
décroit en o et par conséquent, si X, (aq) > 1, alors oy, 4 > . Or

Sala) > N™Hmap e A"

ou F,, est le m-ieme nombre de Fibonacci. Nous souhaitons donc avoir

1
—2(LogN + - Log F,,)a + Log|A| > 0
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