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n -dimensional Hausdorff measure with respect to the Riemann product metric

in Xk. Set
i

lov T lim sup - log Vol Tk
>-oo k

For an / we set lov / lov Tf. This is a smooth invariant of f (it does not

depend on the choice of the Riemann metric).

Our invariant "lov" is sometimes more accessible than entropy and for a

holomorphic / we are going to prove that

(1.0) h(f) < low f.

Density

Denote by Dense(rfc,7), for 7 E Fk C Xk, the rc-dimensional measure

of the intersection of Tk with the ball (in the Riemannian product metric)

of radius e centered at 7. Set Dense(I~T) inf^GrA. Dense(r^, 7), and then

lodner liminf^oo £ logDense r\, and finally

lodn T lim lodne T.
e—>-0

Observe that Vol > Cap2e Dense and hence that

(1.1) h(V) < lov T — lodnT.

§2. Estimates of density

Consider a Riemannian manifold W (it will be Xk in the sequel) and an

n -dimensional subvariety V C W. We suppose that the boundary of V (if
there is such) does not intersect the ball Be C W of radius e > 0 centered

at a point vq £ V. We suppose also that the injectivity radius of W at vq

is at least e, i.e. the exponential map TVo(W) -> W is injective in the e-ball
in TVo(W).

Density of a minimal variety

If the sectional curvature in Be is not greater than K and V is minimal,
then

(2.0) Vol(VnRe) > C>0,
where the constant C depends on n, K, and e, but does not depend on dim W.
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The proof is given below. This fact is well known and C is equal to the

volume of the e-ball in the n -dimensional space of constant curvature K.
Our application of (2.0) to complex geometry is based on

FEDERER'S THEOREM. Analytic subvarieties of a Kühler manifold are
minimal.

Thus we can apply (2.0), conclude that lodnT 0 and obtain (1.0) in the
Kahler case by using (1.1).

Proof of (2.0). We restrict ourselves to the case when W is the Euclidean

space and V is nonsingular. Denote by Ae the (n — 1)-dimensional volume
of the boundary V D dBe.

Minimality of V implies

(2.1) Ve>Vol Coe -Ae
n

where Coe is the cone over Ae centered at vq.
On the other hand

fJo
(2.2) Ve> I Ar dr

Regularity of V implies that

(2.3) lim — lim -A- Cn,
e->o e" e-»-o ne"~l

where Cn is the volume of the unit ball in Rn.

Combining (2.1), (2.2) and (2.3), we get

(2.4) Fe>Cnen,

which implies (2.0) in the Euclidean case.

Proof of (1.0). As we mentioned above, (2.4) implies (1.0), but only in
the Euclidean case where (2.4) is proven. But the local nature of the density
enables us to reduce the general case to the Euclidean one: near each point
x G X we equip the complex manifold X (we suppose that X is compact
without boundary) with a flat (i.e. Euclidean) Kühler structure and use the

product structure near each point from Xk. Independence of "lodn" upon the

choice of the metric allows one to apply (2.4) to derive the vanishing of
"lodn" and thus the desired inequality h < lov
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