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3. Une application: le théorème de Liouville
DANS LE CAS ANALYTIQUE

Nous allons maintenant appliquer la propriété d'invariance conforme des

géodésiques isotropes au cadre riemannien. Cela semble un petit peu incongru
puisque dans ce cas, bien sûr, il n'y a pas de courbes isotropes. Néanmoins,
lorsque la variété considérée est analytique, un bon moyen d'en faire apparaître
est de tout complexifier. Aussi commençons-nous par quelques rappels sur la

complexification.
Soit x (x\,..., xn) un point de Rn et B(x, r) la boule euclidienne ouverte

de centre x et de rayon r. On note B(x, r) la boule ouverte de Cn de centre

x et de rayon r. Considérons une série

oo

y] y: bai...an(xi-^)ai
i=0 a H \-an=i

qui converge pour tout (xj,.... xn) de B(a, r).
Alors la série

oo

£ y3 bai...an(z\-ai)"1
i=0 c^iH 1- an=i

converge pour tout (zi,... ,zn) de B(a, r).
Maintenant, si / est une application analytique définie sur un ouvert

connexe U de Rn à valeurs dans R, on peut la complexifier sur des boules
de rayon assez petit dans U. Cela permet de définir une extension globale /
de / à un ouvert U de Cn contenant U.

Lorsque / est une application analytique à valeurs dans un espace vectoriel
de dimension finie, on peut également la complexifier en appliquant le procédé

précédent à chaque fonction coordonnée (l'ouvert U n'est a priori pas le même

pour toutes les fonctions coordonnées mais comme elles sont en nombre fini,
on peut en trouver un commun). Ainsi, n'importe quel tenseur analytique

(métrique pseudo-riemannienne, structure conforme, structure symplectique)
défini sur un ouvert de Rn peut se complexifier en un tenseur holomorphe
sur un ouvert de Cn. Par analyticité, certaines propriétés se conservent lors
de la complexification. Par exemple toute application conforme analytique /
de (U,g) dans (V\g') se complexifie en / conforme et holomorphe de (U,g)
dans (V,gf).

Nous allons à présent montrer la proposition suivante, qui donne directement

le théorème de Liouville grâce au lemme de Möbius. On note gcan la

métrique euclidienne sur Rn.
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Proposition 5. Pour n > 3, une application f conforme et analytique

entre deux ouverts U et V de (Rn,gcan) envoie localement les (n -Y)-sphères
de U sur les (n — 1 )-sphères de V.

Preuve. L'application / est analytique: on peut donc la complexifier en

/ de U sur V. De même, la métrique canonique restreinte à [/ et à V

se complexifie en gcm sur U et V (c'est en fait la restriction à ces deux

ouverts de la forme quadratique complexe zj + ••• + zl). Le corollaire 4

permet d'affirmer que / envoie les géodésiques isotropes de (U,gcan) sur les

géodésiques isotropes de (V,gcan). Or les géodésiques pour la métrique gcm

sont les droites complexes affines de Cn, c'est-à-dire les courbes +
avec a et b dans Cn. Par conséquent, si u (u\..., un) appartient à U et

v (ui,..., vn) est l'image de u par /, alors / doit envoyer l'intersection
du cône Cu d'équation Y^j= î (zj ~ uj)2 0 avec ^ sur l'intersection du cône

Cv d'équation Y2j=i (zj ~~ vj)2 — 0 avec V.
On note, pour tout j, uj — uy + iu2j et on prend x (xi,.. » %xn) un point

de Cu H Rn. Ce point doit vérifier (xj ~ uj)2 0, ce qui se traduit par
deux conditions.

La première s'écrit Y^j= i (xj ~ uij)2 — î u2j et indique que x appartient

à la (n— 1)-sphère de centre pu — (u\\,..., u\n) et de rayon (u\x + • • • + u\n)2

La seconde s'écrit J2j= î uy(xi ~ wi/) 0 et dit que x appartient à

l'hyperplan affine passant par pu et orthogonal à la direction (u2y u2n).

Ainsi CwnR" est une (n—2)-sphère centrée en pu et de rayon (u\{ + • • • + u\n)2.
Comme u est dans U, le point pu appartient à U. En faisant décrire

9 9
1

a (mJj H h «2n)2 un Petit intervalle autour de 0, on obtient toutes les
(n — 2) -sphères centrées en pu de rayon suffisament petit.

Ceci montre qu'il existe un voisinage de pu tel que toute (n - 2)-sphère
contenue dans ce voisinage est envoyée par / sur une (n - 2)-sphère de V.
Par intersection, on en déduit que / envoie localement les cercles sur des

cercles, et on conclut la preuve grâce au

LEMME 6. Un difféomorphisme entre deux ouverts U et V de Rn qui
envoie localement cercles sur cercles, envoie localement (n — 1)-sphères sur
{n — 1) -sphères.

Preuve. Soit p un point de U. Par hypothèse, il existe un voisinage Up
de p tel que tout cercle inclus dans Up est envoyé par / sur un cercle. On
considère une sphère S incluse dans Up et on choisit deux points antipodaux
Xyv et xs sur S. L'image E =f(S) est une hypersurface lisse incluse dans V.
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On choisit p une inversion de pôle f(xN). Comme S est la réunion des cercles
de S passant par xn et xs, p(L\{/(xm)}) est réunion de droites passant par
P0f(xs). C'est un cône de codimension 1, de sommet pof(xs) et lisse en

p°/fe), donc un hyperplan. On en déduit que S\{/(x^)} est une sphère

privée du point f(xN), ce qui achève la preuve.

Remarque 7. Dans le cas n 2 la démonstration est mise en défaut

puisque Cu p| R2 est en général réduit à deux points.
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