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98 CH. FRANCES

3. UNE APPLICATION: LE THEOREME DE LIOUVILLE
DANS LE CAS ANALYTIQUE

Nous allons maintenant appliquer la propriété d’invariance conforme des
géodésiques isotropes au cadre riemannien. Cela semble un petit peu incongru
puisque dans ce cas, bien siir, il n’y a pas de courbes isotropes. Néanmoins,
lorsque la variété considérée est analytique, un bon moyen d’en faire apparaitre
est de tout complexifier. Aussi commengons-nous par quelques rappels sur la
complexification.

Soit x = (x,...,x,) un point de R” et B(x, r) la boule euclidienne ouverte
de centre x et de rayon r. On note E(x, r) la boule ouverte de C" de centre
x et de rayon r. Considérons une série

00
Z Z ba[...an(xl —ap)™ ... (x, —a)™

i=0 ajtFa,=i
qui converge pour tout (x;,...,x,) de B(a,r).
Alors la série
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converge pour tout (zp,...,z,) de B\(a, r).

Maintenant, si f est une application analytique définie sur un ouvert
connexe U de R" a valeurs dans R, on peut la complexifier sur des boules
de rayon assez petit dans U. Cela permet de définir une extension globale f
de f a un ouvert U de C" contenant U.

Lorsque f est une application analytique a valeurs dans un espace vectoriel
de dimension finie, on peut également la complexifier en appliquant le procédé
précédent a chaque fonction coordonnée (I’ouvert U n’est a priori pas le méme
pour toutes les fonctions coordonnées mais comme elles sont en nombre fini,
on peut en trouver un commun). Ainsi, n’importe quel tenseur analytique
(métrique pseudo-riemannienne, structure conforme, structure symplectique)
défini sur un ouvert de R"” peut se complexifier en un tenseur holomorphe
sur un ouvert de C". Par analyticité, certaines propriétés se conservent lors
de la complexification. Par exemple toute application conforme analythue f
de (U, g) dans (V,g’) se complexifie en f conforme et holomorphe de (U g)
dans (V g’ ). ‘

Nous allons a présent montrer la proposition suivante, qui donne directe-
ment le théoreme de Liouville grice au lemme de Mobius. On note g, la
métrique euclidienne sur R”.
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PROPOSITION 5. Pour n > 3, une application f conforme et analytique
entre deux ouverts U et V de (R", gean) envoie localement les (n—1)-spheres
de U sur les (n — 1)-spheres de V.

Preuve. L’ apphcatlon f est analytique: on peut donc la complexifier en
f de U sur V. De méme, la metrlque canonique restreinte a U et a V

se complexifie en oy SUr UetV (c’est en fait la restriction a ces deux
ouverts de la forme quadratique complexe z2 + --- -+ z2). LE corollaire 4
permet d’affirmer que ]? envoie les géodésiques isotropes de (U, gcan) sur les
géodésiques isotropes de (V, Jean) . Or les géodésiques pour la métrique Jean
sont les droites complexes affines de C", c’est-a-dire les courbes z — a + bz
avec a et b dans C". Par conséquent, si u = (ul, ...,u,) appartient a U et
v = (vy,...,v,) est I'image de u par f alors f d01t envoyer 1’intersection
du cone Cu d’équation ijl (z — uj)* = 0 avec U sur I’intersection du cone
C, d’équation Y 7, (z; — v;)* =0 avec V.

On note, pour tout j, u; = uyj + iup; et on prend x = (x1,...,x,) un point
de C,NR". Ce point doit vérifier Y 7, (x; — u;)*> =0, ce qui se traduit par
deux conditions.

La premiere s’écrit 2;21 (o — uyy)* = Zj';l u%j et indique que x appartient

1
ala (n—1)-sphere de centre p, = (41, ..., u;,) et de rayon (u%l = wwe - u%n)2 .
La seconde s’écrit 27:1”2.1'(’?1‘ —uy;)) = 0 et dit que x appartient a
I’hyperplan affine passant par p, et orthogonal a la direction (uyy,...,us,).
1

Ainsi C,NR" est une (n—2)-sphére centrée en p, et de rayon (13, + - - - + us )? .

Comme u est dans U, le point p, appartient a U. En faisant décrire

a (us; +-+ u%n)% un petit intervalle autour de 0, on obtient toutes les
(n — 2)-spheres centrées en p, de rayon suffisament petit.

Ceci montre qu’il existe un voisinage de p, tel que toute (n — 2)-sphere
contenue dans ce voisinage est envoyée par f sur une (n — 2)-sphére de V.
Par intersection, on en déduit que f envoie localement les cercles sur des
cercles, et on conclut la preuve grace au

LEMME 6. Un difféomorphisme entre deux ouverts U et V de R" qui
envoie localement cercles sur cercles, envoie localement (n — 1)-sphéres sur
(n — 1)-spheres.

Preuve. Soit p un point de U. Par hypothese, il existe un voisinage U,
de p tel que tout cercle inclus dans U, est envoyé par f sur un cercle. On
considere une sphere § incluse dans U, et on choisit deux points antipodaux
xy et xs sur §. L'image X = f(S) est une hypersurface lisse incluse dans V.
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On choisit p une inversion de pole f(xy). Comme S est la réunion des cercles
de S passant par xy et xs, p(Z\{f(xy)}) est réunion de droites passant par
p o f(xs). C’est un cdne de codimension 1, de sommet p o f(xs) et lisse en
p o f(xs), donc un hyperplan. On en déduit que X\{f(xy)} est une sphere
privée du point f(xy), ce qui achéve la preuve. [

REMARQUE 7. Dans le cas n = 2 la démonstration est mise en défaut
puisque C,[|R? est en général réduit & deux points.
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