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254 : S. CANTAT

6.2 UN THEOREME DE JORG WINKELMANN

Sur une variété parallélisable compacte L/T", les champs de vecteurs
holomorphes globaux sont en correspondance bi-univoque avec les éléments
de I’algebre de Lie [ de L. Tout endomorphisme ¢ de L/I" détermine alors un
endomorphisme d’algebre de Lie ¢, : [ — [ (voir [29]). Si L est simplement
connexe, il existe donc un automorphisme ® de L qui stabilise I' (i.e
O(I) CT') et un élément a de L tel que ¢(g") = a®(g)I".

Puisque ¢, est un morphisme d’algebre de Lie, il préserve le radical
résoluble de [. Ceci permet de trouver une fibration équivariante de L/T" a
valeurs dans S/T” ol § est semi-simple. Puisque tous les endomorphismes
des algebres de Lie simples sont intérieurs, 1’endomorphisme induit sur la
base est un automorphisme et I’un de ses itérés est une translation a gauche.
Ce raisonnement peut &tre poussé un cran plus loin et conduit au théoreme
suivant de J. Winkelmann [29]:

THEOREME 6.1 (J. Winkelmann). Soit F = L/T" une variété complexe
compacte parallélisable et f un endomorphisme holomorphe de F. Si N
désigne le nilradical de L, il existe un automorphisme f': L/NT" — L/NT
qui rend le diagramme suivant commutatif

L/T L . L/T

Wl lﬂ

L/ (NT) —f—/—> L/ (NT) .

Reprenons 1’étude de la fibration de Tits commencée au paragraphe 6.1. Le
théoréme précédent s’applique simultanément a 1’action du groupe parabolique
P et a celle induite par I’endomorphisme f sur les fibres. Nous pouvons donc
énoncer une version fibrée du théoreme de J. Winkelmann. Si*nous notons
L/T la fibre de Tits (ou I' est un réseau du groupe de Lie complexe, connexe
et simplement connexe L), et N le radical nilpotent de L, nous obtenons un
diagramme commutatif de fibrations

morphisme ﬁbré\

X > Y

i |

oo
qui est équivariant sous ’action de f; la vari€té Y est un espace homogene
complexe compact dont la base de Tits est isomorphe a P™ et la fibre a
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L/(NT); cette variété Y est munie d’un endomorphisme fy agissant par
automorphisme dans les fibres.

6.3 ENDOMORPHISMES AGISSANT PAR AUTOMORPHISMES DANS LES FIBRES

PROPOSITION 6.2. Soit X une variété homogene complexe compacte dont
la fibration de Tits a pour base un espace projectif. Si f est un endomorphisme
de degré strictement supérieur & 1 qui agit par automorphisme dans les fibres,
la fibration de Tits est un produit.

Démonstration: premiére étape. Conservons les notations du para-
graphe 6.1 et supposons pour commencer que la fibre de Tits F est le
quotient d’un groupe de Lie semi-simple simplement connexe L. Dans ce cas,
quitte 2 remplacer I’endomorphisme f par 'un de ses itérés, 'action de f
dans les fibres se fait par translation. En particulier, son action sur le groupe
fondamental des fibres est triviale. Le degré de f étant supérieur a 1, I’action
de f sur m(P™) est la multiplication par un entier strictement plus grand
que 1. L’équivariance de la suite exacte

(22) R Wz(Pm) — m(F) = mX) —» m(P") = {O} % .

montre donc que la premiere fleche a une image finie. Quitte a changer X
par un revétement fini, on peut donc supposer que le groupe fondamental de
F s’injecte dans celui de X.

Si nous passons au revétement universel X de X , la fibre de la fibration de
Tits est alors remplacée par le groupe de Lie simplement connexe L et X est
I’espace total d’un fibré principal sous I’action de L par translations a droite.
L’endomorphisme f s’y releve en un morphisme d’espaces fibrés ]7: X=X,
qui est équivariant pour I’action de L par multiplication a droite a la source
et par multiplication a droite apreés composition par un automorphisme de L
au but. On obtient donc un morphisme f au-dessus de f entre deux fibrés
principaux €quivalents. Les classes caractéristiques du fibré principal X doivent
&tre invariantes par f et sont donc nulles, car f agit par multiplication par un
entier positif strictement plus grand que 1 sur chaque espace de cohomologie.
Nous allons employer cette propriété a plusieurs reprises pour montrer que la
fibration de Tits est en fait un produit.

Soit W le fibré vectoriel obtenu en faisant le produit fibré du fibré principal
X par la représentation adjointe de L. Il suffit de montrer que ce fibré vectoriel
est trivial. Par construction, X est un fibré principal obtenu par la suspension




	6.2 Un théorème de Jörg Winkelmann

