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288 F. GAUTERO

8. Approximation of straight quasi geodesics in fine position

PROPOSITION 8.1. Let h be a horizontal geodesic. Let g be a straight
(J, Jf)-quasi geodesic, between the orbits of the endpoints of h. There exists
a constant C8.i(|/i|r,/, J') such that, if g is in fine position with respect to
h, then g is C%A(\h\r,J,J')-close to the orbit-segments between its endpoints
and those of h. Moreover C8.i(L,/,/) < C8.i(M,/,/) if 0 < L < M, and
C8.!(L,/,/) > C81(Z/,/,J0 if L> Lf > M.

Proof We consider any maximal (in the sense of inclusion) + -hole b
in g, with minxG^/(x) >f(h)-\- Cßj(J. Jf)to. By Lemma 6.7, the horizontal
geodesic / between its endpoints is dilated in the past after C6n(J,Jf)tQ
if \I\pi) > Q.7Since g and h are in fine position, this implies that
V\pi) 7? max(|/z|r, C(>j(J,J')). If f(h) </(/) </(/0+Q.7CD the bounded-

dilatation property gives |/|/(/) < \<^-l(-J,J,)t°\h\r.

With the same notation, assume now that b is a maximal --hole with
/CD < f(h) - C6j(JJf)t0. The pulled-tight image of I in the stratum of
h is not necessarily contained in h. However, if it is not, then we can
write I I\ h h such that I\ and /3 are contained in cancellations, and
the pulled-tight image of I2 in the stratum of h is contained in h. This
follows from the fact that h and g are in fine position. If \I\f(I) > C6j(J,Jf)
then, by Lemma 6.7, I is dilated in the future after Cßj(J,fi)to. On the
other hand, \U2)m\m < \h\r,andeither \It\f < 1

or I [//]/(/)+c6.7(i,y)fo l/(/)+c6.7(/,y)'o - Rm for ' c 1 or ' - 3
• Indeed

I [-I(]/(/)+C6.7(i,y')?o ly(/)-f_c6 7(/,r/)ïo
^

1 !/('/) I'5.3MX ').) ~* l)to) contradicts
Lemma 5.3 since the left inequality implies that

0
is dilated in

the future after t0,thus/, would be dilated in the future after (C6J(J,J')+l)t0.
By Lemma 5.4 we get: If |/|/(7) > C6J(Jthen

I I\m< C5A(C6j(J,J'),3,max(\h\r,C5.3((C6j(J,J')+

It remains to consider the case where f(h) >/(/) >f(h) - C6J(J,Jf)t0. The
bounded-cancellation property gives an upper bound for \I\f(I).

We have thus proved that, for any maximal +-hole b in g which lies
above h, or any maximal --hole b in g which lies below h, the horizontal
distance between the endpoints of b is bounded above by some constant
A(\h\r,J,J'). Lemmas 7.3 and 7.1 then provide a constant

such that after replacing maximal --holes in g by the horizontal geodesics
between their endpoints, we get a straight (B(\h\r, J, Jf),B(\h\r, J, J'))-quasi
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geodesic, with the same endpoints, in fine position with respect to which

is Cj.3(A(\h\r, J, J'), J, J1)-close to g and which is a stair or the concatenation

of two stairs. Lemma 6.4, together with Lemma 5.4 applied as above, then

provide CbÂ{B{\h\r,J,J'),B{\h\r,J,J')) and

D(\h\r,JJf) C5A(l,3,C6A(B(\h\r,J,Jf),B(\h\r,J,f))

such that this, or these, stair(s) are D(\h\r, J, J')-close to the orbit-segments

between h and their endpoints. We conclude that g is Cj3(A(\h\r,J,
Z)(|/z|r,7,//)"cl°se to these orbit-segments. The last point of the proposition
is obvious.

9. Putting paths in fine position

PROPOSITION 9.1. Let h be a horizontal geodesic. Let g be a straight
(/, J') -quasi geodesic, which joins the future or past orbits of the endpoints

of h. There exist a constant and a ,J'),Cg,i(J^J'^-quasi
geodesic Q which is C9.1 (/,/') -close to g, which has the same endpoints as

g, and which is in fine position with respect to h.

Proof We consider a maximal subpath g' of g whose endpoints lie in
the future or past orbits of some points in h, and such that no other point
of g' satisfies this property. Consider any maximal --hole b in g', and let

I denote the horizontal geodesic between the endpoints of b.

Case 1. Either I is contained in a cancellation or I is the concatenation
of two horizontal geodesies, each contained in a cancellation.

Lemma 6.7 gives Cßj(J,Jf) such that, if \I\f(I) > then I is
dilated in the future after C6j(J,Jf)to. Lemma 5.3 gives C53(Cej(J, J1)) such
that the horizontal length of any horizontal geodesic contained in a cancellation
and dilated in the future after C<sj(J,J')to is at most C53(C6j(J,J')). By
Lemma 5.4 we get an upper bound C5A(C6J(J,J,)f21 C$3(C6J(J, /))) on the
horizontal length of I.

Case 2. There exists another horizontal geodesic in another connected

component of the same stratum whose pulled-tight projection agrees with that
of I after some finite time.

We consider the maximal geodesic preimage I' of / under crc61(j,j')t0
which connects two points of b. It admits a decomposition into subpaths Ta
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