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SOME REMARKS ON NONCONNECTED COMPACT LIE GROUPS

by Jean-Francois HAMMERLI ")

ABSTRACT. Let G, be a connected compact Lie group and let I' be a finite
group. Denote by £ the set of equivalence classes of extensions of I" by G,. Using
the notion of principal subgroup, we show that two nonconnected compact Lie groups
are isomorphic if and only if the cohomology classes corresponding to their naturally
associated extensions are in the same orbit under an action of Out(G,) X Aut(I')
on &. Explicit examples of this cohomological classification are given. A revisited
“Sandwich” Theorem and some criteria for the splitting of the extension associated to
a compact Lie group are also presented.

1. INTRODUCTION

Naturally associated to a compact Lie group G, there is a group extension
G, — G — I', where G, denotes the connected component of the identity
of G, and T' = 7,(G) = G/G, denotes the finite group of connected
components. The problem we want to address here is the following: given a
connected compact Lie group G, and a finite group I', can one classify up to
isomorphism the compact Lie groups with connected component isomorphic to
G, and with group of components isomorphic to I" ? Of course, the classical
theory of group extensions with nonabelian kernel and its relationship to
the appropriate cohomology groups of degree 2 gives a partial answer to
our question. However, these cohomology groups classify groups only up
to equivalence of extensions, leaving the isomorphism question unsolved in
general. This is illustrated, in the case of finite groups, by the following
well-known example: the cohomology group H*(Z/3;Z/3) is isomorphic to
Z/3, but there are only two nonisomorphic groups with 9 elements, two

") The author was supported by the Japan Society for the Promotion of Science (JSPS) and
by the Grant-in-Aid for Scientific Research No. 12000751-00 of the JSPS.
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nonequivalent extensions corresponding to the group Z/9. Let us restate the
above problem in this context: given two compact Lie groups G and G,
how can one tell from the cohomology classes associated to their extensions
whether they are isomorphic or not ?

As the Lie algebra associated to a Lie group only gives information
on the connected component, Lie groups have often been studied under the
hypothesis of connectedness. However, nonconnected compact Lie groups arise
quite naturally : the orthogonal group O(n) of rigid motions that fix the origin
of the Euclidean n-space, or more generally, the isometry group of a compact
Riemannian manifold are examples of such groups. Moreover, some physicists
have revived the idea that nonconnected compact Lie groups might be the
relevant objects in certain gauge theories (see [18] for instance). The problem
of classification addressed here has a long history, starting mainly with the
work of de Siebenthal in the ’50s [9]. However his paper, as well as Mclnnes’
recent paper [18], restrict attention to particular cases, and do not solve the
problem in full generality. We first became interested in this question when
we needed a precise answer as a basic ingredient for a generalization, in the
nonconnected setting, of the remarkable theorem of Curtis, Wiederhold, and
Williams, saying that two connected compact Lie groups are isomorphic if and
only if the normalizers of their maximal tori are isomorphic (see [7], and the
paper by Osse [20] for a general proof, valid in the non-semisimple situation).
This generalization then provides a new proof, in the nonconnected case, of
the homotopy-theoretic result that a compact Lie group is, up to isomorphism,
characterized by its classifying space [13]. Even though the cohomological
classification of compact Lie groups described in this work might be “well-
known to the experts”, we could not find any reference for it in the literature.
Besides, even a recent paper, in which this classification is needed, gives a
description of it which does not hold in general (see the Introduction of [13]
for more details). Therefore our motivation is twofold. Firstly, we intend to
give a precise account of a solution to the classification problem described
above, together with examples illustrating the fact that it can be explicitly
carried out when given some specific groups G, and I', but that some care
has to be taken to avoid pitfalls. Secondly, we want to pay a tribute to the
work of de Siebenthal [8,9] by showing that, as in the restricted cases he
considered, the principal subgroups he defined play a key role in the general
case.

Let us briefly describe our main result. For G, and I' as above, let
E = EI,G,) denote the set of equivalence classes of extension of I' by
G,. To a given class corresponds an “outer action”, i.e. a homomorphism
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¢: I" — Out(G,), where Out(G,) is the group of outer automorphism of G,.
Let Z, denote the center of G, (recall that Z, is the direct product of a
finite abelian group and a torus); by “restriction”, ¢ gives rise to an action
on Z,, i.e. to a homomorphism @: I' — Aut(Z,). As explained in Section 3,
the classical theory of group extensions applied to this particular case shows
that the set £ corresponds to the disjoint union

E=EM,Gy~ || HZ).
cpeHom(F,Out(Go))

For o € Out(G,), let @ € Aut(Z,) denote the restricted automorphism.
A cohomology class u € H?p-(l“; Z,) will be canonically identified with
the corresponding equivalence class of extensions and will be denoted by

U= [ZO K75 F} . In Section 4, we show that the map

(@, B),u) — (e, B) . = {Zo gAY r]

defines an action of Out(G,) x Aut(I') on the set £. Using principal subgroups,
we then prove that this action allows us to pass from up to equivalence of
extensions 10 up to isomorphism of Lie groups, as stated in the following
theorem.

MAIN THEOREM. Two compact Lie groups G, and G,, are isomorphic
if and only if the corresponding cohomology classes uy € H<251 I;Z,) C &€
and u, € Héz(l“; Z,) C & are in the same orbit under the action of
Out(G,) x Aut(I).

REMARK 1.1. It is well-known that there exists only a finite number
of non-isomorphic compact Lie groups of given dimension and number of
components (see [23], Theorem 5.9.5). In particular, the number of orbits in
the Main Theorem is always finite.

NOTE. The Main Theorem is straightforward for the case in which G, is
abelian, i.e. the connected component is a torus. So, for the rest of this work,
we will always suppose that G, is nonabelian.

The paper is organized as follows. Section 2 is based on the work of
de Siebenthal. It recalls the notion of principal subgroup and gathers results
related to nonconnected compact Lie groups. As already mentioned, the theory
of group extension is applied to our situation in Section 3. In particular, it
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is shown that centralizers of principal subgroups are extensions of I" by the
center Z, of G, that completely control the situation. The Main Theorem is
proved in Section 4 and as an illustration, two examples are then given. The
final section relates the approach taken in the present work with the natural
question of the splitting of the extension associated to a compact Lie group.
As an application of principal subgroups, a revisited “Sandwich” Theorem is
proved. Particular cases where the extension is always split are also described,
and, finally, a “minimal” extension failing to be split is exhibited.

ACKNOWLEDGMENTS. The material in this note is taken from my Ph.D.
thesis [13]. It is a pleasure to thank warmly my advisor Professor U. Suter for
his guidance and constant encouragement. I am also indebted to M. Matthey
for his careful reading of an earlier version of this paper and for his useful
comments.

2. COMPACT LIE GROUPS: A REVIEW

In this section, we recall the existence of subgroups of G whose
related extensions have close relationships to that corresponding to G.
First, we introduce more notation. Let 7 be a fixed maximal torus in
G,, and let LT denote its Lie algebra. Let B be a basis of the root
system R = R(G,,T) of G, associated to T. Let H denote the maximal
semisimple ideal of the Lie algebra LG, of G, ; the principal diagonal
of G, with respect to B is the 1-dimensional subspace given by D(B) =
{X eLT:aX)=p(X), forall o, € B}NH C LT. The image A = A(B) =
exp(D(B)) of this subspace under the exponential map is easily seen to be a
closed subgroup of T, isomorphic to the circle group S!. With a slight abuse
of language, we will also call this subgroup a principal diagonal. *We are now
ready to recall the definition of one of the key notions of the present work.

DEFINITION 2.1 (de Siebenthal). A principal subgroup of G, (associated
to T') is a connected closed subgroup H such that H is not contained in any
proper connected closed subgroup of maximal rank, and such that A(B) C H
for some basis B of R.

‘The work of de Siebenthal shows that any compact Lie group possesses a
principal subgroup of rank 1, thus isomorphic to SU(2) or SO(3), and that
two such principal subgroups are conjugate [8].

S S g S
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NOTE. For the rest of this work, “principal subgroup” will always mean
principal subgroup of rank 1.

Before stating the main result of this section, which is a direct consequence
of the results of de Siebenthal, we introduce three subgroups of G. Let Hr
be a principal subgroup associated to 7, and let Z = Zc(Hr) denote 1its
centralizer in G. This subgroup will play a crucial role in the paper. Let
also N = Ng(T) be the normalizer of T in G. We will use the convenient
notation N, = Ng (T) for the intersection of N with G,, but one should not
be confused, N, is not connected (its group of components being the Weyl
group of G,). Finally, we will consider the centralizer Q = Zs(A) in G of a
principal diagonal A.

THEOREM 2.2. For any compact Lie group G there exists a commutative
diagram

Z,C z r
(R
R i I
No© N r
b R I
Go© G r

where each row is a group extension.

Proof. The centralizer of Hr in G, is equal to the center Z, (by a theorem
of Borel and de Siebenthal [3], this property characterizes the closed subgroups
of G, that are not contained in any proper connected closed subgroup of
maximal rank [5, Ex. 15, p.116]). As Z intersects every component of G
([8], Théoreme 4, pp.253-254), we get an extension Z, — Z — I". The other
statements are deduced from the fact that A C T contains a regular element,
1.e. an element that is contained in exactly one maximal torus, namely 7 in
the present case (see [12] or [17] for more details). L]

REMARK 2.3. We call the subgroup Q an extended maximal torus of G.
These subgroups share some important properties with maximal tori: they are
all conjugate, and fixing one of them, its conjugates by the elements of G,
cover the whole group G. They appear in the literature under various disguises

(see for instance Oliver [19], Section 1, and Segal [22], §4), as explained
in [12].
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In the final section, we will see how the splitting of the extension associated
to G 1is related to the splitting of the extensions associated to N and Q that
appear in Theorem 2.2.

We end this section by recalling a very important result relating the inner,
“usual”, and outer automorphism groups of a connected compact Lie group.
This result is one of the main reasons why the case of compact Lie groups is
well controlled when applying the theory of group extensions, as we will see
in Section 3. For the proof, we refer to de Siebenthal [9, Théoréme, pp.46-47]
(for another approach consult Bourbaki [5], §4.10).

THEOREM 2.4 (de Siebenthal). Let G, be a connected compact Lie group
and let H C G, be a principal subgroup. Then the extension

Inn(G,) < Aut(G,) — Out(G,)

is split, i.e.
Aut(G,) = Inn(G,) X Out(G,) .

A possible splitting is given by s: Out(G,) — Aut(G,), where s(a) is the
unique automorphism in 7w~ (c) fixing H pointwise.

REMARK 2.5. The fact that the extension associated to Aut(G,) is split
was known before the work of de Siebenthal, at least in the semisimple case,
and appeared in a paper of Dynkin [10].

3. COMPACT LIE GROUPS AND EXTENSIONS

We assume knowledge of the classical relationship between group exten-
sions and related cohomology  groups of low degree, as first introduced by
Eilenberg and MacLane [11]. For readers not familiar with it, the textbooks
by Mac Lane [16], Robinson [21], or Adem-Milgram [2], provide a thorough
treatment; a more concise approach can be found in Kirillov’s book [15], and
a sketch in Brown’s [6]. We now want to apply this relationship to the case
of compact Lie groups. We fix a nonabelian connected compact Lie group
G,, a finite group I', and a homomorphism ¢: I' — Out(G,). Recall that
Z, denotes the center of G,. Choosing a principal subgroup H C G, and
fixing s as in Theorem 2.4, we get the commutative diagram
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I —2 > Out(G,) —= Aut(G,)
X l res \l] res
Aut(Z,) Aut(Z,)

In the sequel, we will use the notation o, = (s o @)(y), for v € I'. Let
E[, G,, ) C € denote the subset of equivalence classes giving rise to . In
the particular case of compact Lie groups, one has the following results.

PROPOSITION 3.1.
(i) The set of equivalence classes of extensions E(I', Go, @) is in bijection
with the cohomology group Hé(r; L)

(1) For all u € H%(F; Z,) the corresponding extension G, — G — T’
carries a natural structure of Lie group.

Proof. It suffices to check that £(I", G,, @) # @ to prove (i). But this
follows from Theorem 2.4: the semidirect product G = G, X0, I' €xists
for any . The second statement is easily deduced from classical Lie group
theory. [

The bijection in the latter proposition is not canonical, as it depends on
the choice of a particular element in £(I", G,, ). On the other hand, there is a
canonical bijection between Hé(F; Z,) and the set £(I', Z,, p) of equivalence
classes of extension of I' by Z, with action given by . Therefore, there
is a bijection A: E(I',Z,,p) — ET, G,, ) still depending on the previous
choice. Let us describe this bijection by first expliciting the cohomology group
HZ(T; Z,) = Z%(T; Z,)/B5(T'; Z,). Keeping the multiplicative notation in Z,,
the cocycles, i.e. the elements of Z%(I‘; Z,), are functions h: I’ x I' — Z,
satisfying h(vyi,e) = h(e,~,) = e (normalization), and

(6 (v1, 72, 73) = 04, (A(72,73)) - B(v17y2,73) " - (1, 7273) - By, ) ™) =

for all vy,72,7v3 € I'. The coboundaries, i.e. the elements of BZ z(152,), are
functions &: I" x I' — Z, such that there exists a function k: F — Z,, with
k(e) = e, satisfying

h(y1,72) = (6k)(v1,72) = 04, (k(72)) - k(y172) ™" - k(1)

for all y1,v, € I". Let us choose the semidirect product G,xI" associated to the
section s as the extension corresponding to the neutral element in HZ 7157Z,).
Then, for u = [h] € HX 7I5Z,), the corresponding class of extensmns 18




74 J.-F. HAMMERLI

given by [G, — G, — I'], where G; is the set G, x I' equipped with the
multiplication |

(9,7 *n (9", = (9 04(g") - (v, 7)), v Y)

(see [16], Chapter 1V, §4 and §8). We will also denote by G, — G, -» T’
any representative of the class of extensions corresponding to u € H%(F; Z).
We now give a canonical description of the inverse of A, i.e. a description
that does not depend on the choice of a particular element in E(T', G, ).

LEMMA 3.2. For any principal subgroup H in G,, the map

O: £, Go, ) — EX, Zo, D), [Go = G — T+ [Zy = Zg(H) — T']

is the inverse of A (and does not depend on the choice of H). In particular
it is a bijection.

Proof. As centralizers of principal subgroups are preserved by isomor-
phisms of G, © does not depend on the choice of a representative in
[Go — G = TI. Let u = [Z, — E, - I'] = [h] € H3(T',Z,). Then, we have
the commutative diagram

oc Eh r

]

OL—>G:G/1———»F

where Ej, 1S Z, x I as a set. Let us show that Ej, = Z;,(H), H being the
principal subgroup of G, corresponding to the fixed section s. By Theorem
2.2, it i1s enough to check that Ej 1s contained in Zg,(H). Let (z,v) € Ej
and (x,e) € H C G, C Gy,. We calculate

@,7) *n (x,€) = (z- 04(x) - B(v, €),7)
— (Z - X, 7) y
and
()C, 8) *h (Z7 fY) = ()C : O'e(Z) : h(€7 7)7 7)

=(x-2,7)
:(Z'X,’)/),

by normalization, and because the restriction of o, to H is the identity by
the choice of the section s.
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Now, as the principal subgroups are all conjugate by an element of G, (see
[8], Théoreme, pp.46-47), so are their centralizers. Therefore, the extensions
Zo — Zg(H) — I', for H running through the family of principal subgroups,
all belong to the same class. This shows that © is well defined and satisfies
©®o A =idgrz, - As A is bijective, this shows that @ = A~'. [

We summarize the situation exposed in this section.

THEOREM 3.3. Suppose given G,, a homomorphism ¢:I" — Out(G,)
and an extension Z, — Z — I, for which the homomorphism T' — Aut(Z,)
coincides with @. Then, up to equivalence of extensions, there exists a unique
compact Lie group G fitting into the commutative diagram

ZoC Z r

|

G,© G r

|+

Inn(G,)—— Aut(G,) — Out(G,)

where the rows are group extensions. Moreover the given data allow the
construction of an extension G, — G — I, in which the subgroup Z is the
centralizer of a principal subgroup.

Conversely, the class of the extension Z, — Z —» T in G, — G - I can
be recovered by taking the centralizer of any principal subgroup.

4. PROOF OF THE MAIN THEOREM AND EXAMPLES

We are almost ready to show that the map described in the Introduction
1s an action of Out(G,) x Aut(I") on the set

£~ ]_[ HX(TZ,).
@ E€Hom(T',0ut(G,))
We first introduce some notation. For an element ¢ in a group K, we
will write ¢, for conjugation by g, i.. cg(x) = gxg~!, for all x in K.
For o € Out(G,), we will choose & € Aut(G,) such that (@) = «,
and we will denote the restricted automorphism by & € Aut(Z,). Finally,
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recall that a cohomology class u € Hé(r; Z,) 1is canonically identified
with the corresponding equivalence class of extensions and is denoted by

= [ZOJSZ—”»F].

LEMMA 4.1.
(1) The map Out(Gy) X € = &, (a,u) = u.a = a*(u) = [ZO 75 F}
defines a right action. The image «*(u) corresponds to the extension

oo

G, — G LA I', and belongs to H%(I“; Z,) C &, where 1 = cy-10 .

(i) The map Aut(T) X £ — £, (B, 1) = B.u = Bulu) = [zo & 7Y r]

defines a left action. The image [.(u) corresponds to the extension G, Ly

Bo
G I', and belongs to Hg-(r; Zy) C &, where 0 = o 71,

Proof. As the proofs of the two parts of the lemma are very similar, we
only treat the first one. Consider the following commutative diagram :

Zo—2 72 7 = Zo(H) — LT
a 1 C i p “
go G, G T
c l¢
Inn(G,)" Aut(G,) —== Out(G,)

The principal subgroups are preserved by isomorphisms. As a N(H) is
clearly centralized by any element in Z, the statement about which extension
corresponds to a*(u) follows from Theorem 3.3. At the same time, this shows
that the map is well defined. It is then straightforward to check that it is a right
action. For the resulting homomorphism, we choose a set theoretic section
v:I'= G of p: G- T, and compute for vy € I':

Y =7(({0a) " 0cyy 0 (i0d)
= 7'('(&—_1 o (i ocyiyy0i) 0 @)
=@ tor(lo Co(y) © ©) 0 T(C¥)
— o op()oa
= (ca-100)(Y). -
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Clearly for u € £ and a corresponding representative G, < G, » T,
we have G, = Gy = Gp.w for all a € Out(G,), B € Aut(I'). Moreover,
it is clear that the two actions commute and so we get a left action of
Out(G,) x Aut(I') on &. Elements in the same orbit represent isomorphic
groups; the main result of this paper, stated in the Introduction, tells that the
converse 1s true.

Proof of the Main Theorem: Let p: G,, — G, be an isomorphism of
compact Lie groups. As the connected component of the identity is preserved
by an isomorphism, this gives rise to the commutative diagram

GOL——> Gul —=T

R

GOC———> Gu2 ——=T

Let us define o = 7w(p) € Out(G,) and & = plz . As the centralizers of
principal subgroups are preserved by isomorphisms, and by Theorem 3.3, this
induces a new commutative diagram that we write as follows:

Thus, by Lemma 4.1, we have up; = (a~H*B.(u1), and so u; and u, are in
the same orbit. [

REMARK 4.2. The extension Inn(G,) < Aut(G,) —» Out(G,) is split;
however, other facts are relevant for allowing in the Main Theorem the passage
from up to equivalence to up to isomorphism. The crucial point is that the
class of extensions of the center of the connected component of the identity
G, can be represented by subgroups of G, namely centralizers of principal
subgroups, that are preserved by isomorphisms and all conjugate by elements
in G,. This also raises two natural questions: are there larger classes of
groups for which the Main Theorem holds, and also, can one find explicit
examples for which it fails (even when supposing that the extension relating
the automorphism groups of the kernel of the extension is split) ?
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Before proceeding with two examples, we introduce notations for three
elements of the group SU(2), which will also appear in the final proposition of
the paper. We denote the identity matrix by 1 and we set —1 = diag(—1, —1).

We also set
. (0 1
T=\-1 0o/

EXAMPLE 4.3. We take G, = SU(2) and I'=Z/2. As Out(G,) is trivial
and Z, = Z/2, we have

EZ/2,5U@)~ || HiZ/2%2/2)=HZ/%Z/2)=1Z)2.
wEHomM(Z/2,0)

The group Out(G,) x Aut(I') being trivial, these two elements correspond
to two non-isomorphic compact Lie groups. The first one is clearly G,, =
SU®2) x Z/2. Let us give a description of the second one. Conjugating a
matrix in SU(2) by j amounts to taking the complex conjugate of each entry
in the matrix, i.e. ¢;: SUQ2) — SU(2), g — ci(g) = g. Let us denote by
G., = SU(2) x; Z/2 the semidirect product where the generator ¢ of Z/2
acts as ¢; on SU(2). As the center of G,, is given by ((j, 1)) = Z/4, Gy,
and G,, are non-isomorphic. Therefore G,, is the second compact Lie group
that we were looking for.

It is clear, from what has been done so far, that the elements in Hé(l“; Z)
and in H%(I‘; Z,), with ¢ = c,-1 o, will be identified (at least) pairwise
under the action of the element o € Out(G,). The second example is intended
to show that identifications can even occur inside a given cohomology group
(i.e. without changing the “outer” action of I' on G,).

EXAMPLE 4.4. We take G, = SU(2)xSU(2) = Spin(4) andkeep I' =Z/2.
The outer automorphism group is given by Out(G,) = (), where T is the
automorphism that exchanges the two factors, i.e.

7: SUQ2) x SU2) — SU2) x SUQ2), (g,h) — (h,g),
and Z, = Z/2 x Z./2. We thus have

£(Z/2,SU(2) x SU2)) ~ 1T HX(Z/2,2/2 x 7./2)
weEHomM(Z /2,Z./2) ‘
=H*(Z/2%;Z/2 x Z/2) 1 H5(Z/2;Z/2 x Z/2)
~ (Z/2 x Z/2) 11 {0} .
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One then verifies that as extensions of the center, i.e. as centralizers of a
principal subgroup, these five non-equivalent extensions are in fact represented
by only three non-isomorphic groups, namely

1%

Z/2xZ/2x1Z1]2
~7/2 xZL/4
7.)2 x Z./4
~7/2 x 1/4

1%

Ly,
Zy,
Ly,
-
for the elements of H*(Z/2;Z/2 x Z./2)), and

Zoy 2 (Z)2 x Z.)2) x L2 = Dg

(where Dg denotes the group of symmetries of the square) for the element
of H(Z/2;Z/2 x Z./2). The group Z/2 x Z/4 yields three non-equivalent
extensions, because among its three elements of order 2, only one is divisible
by 2 (the element (0,2) in additive notation). Therefore, this element
must be characteristic and changing the non-trivial element of Z/2 x Z/2
that is mapped to it gives three extensions that must clearly be non-
equivalent. At the level of Lie groups, the five non-equivalent extensions
are represented by

w = SUQR) x SUR) x Z/2

w = (SUQ) x SUR)) xxia Z/2
w = (SUQ2) x SUQ)) Xigx; Z,2
w = (SUQR) x SUQ)) Xjx, Z,/2
Gy, = (SUR) x SUQR)) x, Z/2.

Q QQ Q Q@

(One checks that (—1,1,e) corresponds to the characteristic element of or-
der 2 in Z, whereas it is (1,—1,e) in Z,,, and therefore G, and G,, are
certainly not equivalent.) Finally, the group Out(G,) x Aut(I') = Z /2 acts on
this set of equivalent extensions, and it is clear that the only non-trivial orbit

is {Gu,, Gy, }. Therefore there are four non-isomorphic extensions of Z/2 by
SU2) x SU(2) = Spin(4).
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5. SPLITTING OF THE EXTENSION
ASSOCIATED TO A NONCONNECTED COMPACT LIE GROUP

Let G still denote a compact Lie group with a nonabelian connected
component; we also assume the other notations introduced previously. In this
final section, we make a few observations on the following problem: when
18 the natural extension associated to G split, i.e. when is G isomorphic
to a semidirect product G, x I' ? Our aim is to relate this problem to the
rest of this work. For a deeper analysis one should consult Chapter 6 in the
book by Hofmann and Morris [14]. We start with a structure theorem for
compact Lie groups based on centralizers of principal subgroups, similar to
the “Sandwich Theorem for compact Lie groups” (see [14], Corollary 6.75,
p.272). This theorem shows that any compact Lie group is “sandwiched” in
between two semidirect products closely related to it. We then recall a theorem
of de Siebenthal and compare, in some particular cases, the question of the
splitting of the extension associated to G to that of the extensions associated
to the normalizer N of a maximal torus and to the centralizer Q of a principal
diagonal, both introduced in Section 2. As an application of the “Sandwich”
Theorem, the final proposition presents a “minimal” compact Lie group G
such that the associated extension is not split.

Let G, denote the adjoint group G,/Z, ; it is well-known that the center
of G, is trivial.

THEOREM 5.1. Let G be a compact Lie group with a nonabelian connected
component. Then there exist two surjective homomorphisms

Gi=Go,xZ 5% G 5 G=G/Zy2GyxT,
(90,2) > o' Z
where the centralizer Z of a fixed principal subgroup acts on G, by
conjugation, and where m, is the canonical projection corresponding to the

normal subgroup Z, of G.
For the kernels, we have kerm| = Z, and kermy, = Z,; in particular

G=(GoxZ))Zy and G/Zy=2G,xT.

Proof As G, is centerless, G must be isomorphic to G, x I' by the
proof of Proposition 3.1. The other assertions about 7, are clear.

The map m is well-defined and surjective (because Z intersects every
component of G). Straightforward computations show that it is a homomor-
phism and that kerm; =2 Z,. []
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REMARK 5.2. 1) The component of the identity of G; is equal to G, if
and only if G, 1s semisimple.

2) The present version of the “Sandwich” Theorem has the advantage of
being more explicit than the one in [14] (the result therein is an existence
theorem). Its drawbacks are the fact that Z is not finite if G, is not semisimple,
and that it obviously makes no sense for compact Lie groups with an abelian
connected component.

3) Given a homomorphism ¢: I' — Out(G,), and an extension Z, SHEST
for which the action coincides with the “restriction” ¢, there is a more direct
way than the cohomological one to recover the corresponding compact Lie
group G, 1.e. the one that fits into the commutative diagram

L1

Let us define the composition : E “ré Out(G,) > Aut(G,), where s 1is
as in Theorem 2.4. Then by Bourbaki (see [4], Lemme 7, pp.210-211), we
have

G = (G, ><IEE)/AZO>

where AZ, is the image of the injection z, — (z5 !, u(z,)). Taking E = Z,
this gives another proof of the assertions concerning 7; in Theorem 5.1.

Using Cartan subgroups (in the sense of Segal [22], i.e. those Adams called
“SS subgroups” in honour of Segal and de Siebenthal [1]), de Siebenthal gave
some explicit sufficient conditions for the splitting of the extension associated
to G ([9], Théoreme p.74).

THEOREM 5.3 (de Siebenthal). Let G be a compact Lie group with G,
simply connected, or of adjoint type (i.e. Z, is trivial). If T = 7(G) is cyclic
then G is a semidirect product, i.e. G= G, x T.

A relationship with the splitting of the extension associated to the
normalizer of a maximal torus N in G is given in the next proposition.

PROPOSITION 5.4. If the group of components 1" of G is nilpotent, then

the extension G, — G — T is split if and only if the extension No - N —»T
is split.
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Proof. The “if” part is clear. Conversely, let s: I' — G be a section.
By a result in Bourbaki (see [5], Corollaire 4, p.49), any nilpotent subgroup
of a compact Lie group is contained in the normalizer of some maximal
torus. Therefore, if needed after conjugation by an element in G,, we have
s(I') C N, and we can conclude that the extension associated to N is split. [

For an extended maximal torus Q, the extensions can be related as follows.

PROPOSITION 5.5. If the group of components " of G is cyclic, then the
extension G, — G — I is split if and only if the extension T — Q —» I is
split.

Proof. The proposition readily follows from the fact that the conjugates
of Q cover G. [ ’

REMARK 5.6. This latter proposition fails in general. An obstruction to
the splitting of the extension associated to the extended maximal torus Q can
be found in a paper by Oliver; this obstruction involves the representation
ring of G and its relation with the family of all p-toral subgroups of G (see
[19], Corollary 3.11). In particular, Oliver constructs a compact Lie group
G =SUQR) % (Z/2 xZ/2 x Z/3) such that the extension corresponding to the
extended maximal torus Q is not split ([19], pp.376-377).

We conclude with the promised example.

PROPOSITION 5.7. Let Dy = (r,s|r* =5 =e,srs"! =r~1) be a pre-
sentation of the dihedral group. Then the quotient

G = (SU(2) x Dg)/AZ/2,

where AZ/2 denotes the central subgroup generated by (—1,r?), is a compact
Lie group with G, 2 SUQR) and T' =2 Z/2 X Z/2, the 4-group of Klein. The
associated extension

SUR) — G —-»Z/2xZ/2

is not split. Among the extensions associated to a compact Lie group with
a nonabelian connected component, it is a minimal one having the property
of being non-split, in the sense that the rank of the connected component
and the size of the group of components are minimal. Moreover replacing the
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connected component by SO(3) (i.e. by “any” group of the same rank), or
the group of components by Z./4 (i.e. by “any” group of the same size), will
force the extension to be split.

Proof. The assertions about the connected component and the group of
components are clear. Let us show that the extension associated to G is not
split. Let us denote [g,7] € G the image of (g,v) € SU(2) x Dg under the
canonical projection. Let S! denote the standard maximal torus in SU(2), and
let N denote its normalizer in G. We have

N={[tel:t €S} {[jt,e]:t € S} I {[t,r]:t € S'} L {[jt,r]:t€S"}
I {[t,s]:t€S"} 1L {[jt,s]:1 € S'} I {[t,rs]:t € S'} L {[jt,rs]:1€S'}.

By contradiction, suppose that the extension associated to G is split, 1.e. there
exists a section. As Z/2 x Z/2 is abelian, thus nilpotent, we deduce, by
Proposition 5.4, that the extension associated to N is also split. We want
to show that this is not possible by considering the elements of order 2 in
N. For n = 0,1, a straightforward calculation shows that in the component
corresponding to r"s, an element [z, 7"s] is of order 2 if and only if f = +1,
and that the sub-component {[jt, rs]:t e Sl} does not contain any element
of order 2. Two of the three non-trivial elements in I' = Z/2 x Z/2 must thus
be mapped by the section to [£1,s] and [£1,rs]. Therefore, as the section
1s a homomorphism, the image of the third non-trivial element is

[Zl:la rs] - [:t17S] — [ila r] )

which is not of order 2. A contradiction that shows that the extension associated
to G 1is not split.

The property of minimality follows by Theorem 5.3, and by the fact that any
extension with SO(3) as normal subgroup is a direct product (because SO(3)
is complete, i.e. centerless and with trivial outer automorphism group). [
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