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SOME REMARKS ON NONCONNECTED COMPACT LIE GROUPS

by Jean-François HÄMMERLI*)

Abstract. Let G0 be a connected compact Lie group and let T be a finite
group. Denote by E the set of equivalence classes of extensions of T by G0. Using
the notion of principal subgroup, we show that two nonconnected compact Lie groups
are isomorphic if and only if the cohomology classes corresponding to their naturally
associated extensions are in the same orbit under an action of Out(G0) x Aut(T)
on E. Explicit examples of this cohomological classification are given. A revisited
"Sandwich" Theorem and some criteria for the splitting of the extension associated to
a compact Lie group are also presented.

1. Introduction

Naturally associated to a compact Lie group G, there is a group extension
G0 G -» r, where G0 denotes the connected component of the identity
of G, and T ir0(G) G/G0 denotes the finite group of connected

components. The problem we want to address here is the following : given a

connected compact Lie group G0 and a finite group T, can one classify up to

isomorphism the compact Lie groups with connected component isomorphic to
G0 and with group of components isomorphic to T Of course, the classical
theory of group extensions with nonabelian kernel and its relationship to
the appropriate cohomology groups of degree 2 gives a partial answer to
our question. However, these cohomology groups classify groups only up
to equivalence of extensions, leaving the isomorphism question unsolved in
general. This is illustrated, in the case of finite groups, by the following
well-known example: the cohomology group H2(Z/3;Z/3) is isomorphic to
Z/3, but there are only two nonisomorphic groups with 9 elements, two

*) The author was supported by the Japan Society for the Promotion of Science (JSPS) and
by the Grant-in-Aid for Scientific Research No. 12000751-00 of the JSPS.
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nonequivalent extensions corresponding to the group Z/9. Let us restate the

above problem in this context : given two compact Lie groups G and G',
how can one tell from the cohomology classes associated to their extensions

whether they are isomorphic or not
As the Lie algebra associated to a Lie group only gives information

on the connected component, Lie groups have often been studied under the

hypothesis of connectedness. However, nonconnected compact Lie groups arise

quite naturally : the orthogonal group O(n) of rigid motions that fix the origin
of the Euclidean n-space, or more generally, the isometry group of a compact
Riemannian manifold are examples of such groups. Moreover, some physicists
have revived the idea that nonconnected compact Lie groups might be the

relevant objects in certain gauge theories (see [18] for instance). The problem
of classification addressed here has a long history, starting mainly with the

work of de Siebenthal in the '50s [9]. However his paper, as well as Mclnnes'
recent paper [18], restrict attention to particular cases, and do not solve the

problem in full generality. We first became interested in this question when

we needed a precise answer as a basic ingredient for a generalization, in the

nonconnected setting, of the remarkable theorem of Curtis, Wiederhold, and

Williams, saying that two connected compact Lie groups are isomorphic if and

only if the normalizers of their maximal tori are isomorphic (see [7], and the

paper by Osse [20] for a general proof, valid in the non-semisimple situation).
This generalization then provides a new proof, in the nonconnected case, of
the homotopy-theoretic result that a compact Lie group is, up to isomorphism,
characterized by its classifying space [13]. Even though the cohomological
classification of compact Lie groups described in this work might be "well-
known to the experts", we could not find any reference for it in the literature.

Besides, even a recent paper, in which this classification is needed, gives a

description of it which does not hold in general (see the Introduction of [13]
for more details). Therefore our motivation is twofold. Firstly, we intend to

give a precise account of a solution to the classification problem described

above, together with examples illustrating the fact that it can be explicitly
carried out when given some specific groups G0 and T, but that some care

has to be taken to avoid pitfalls. Secondly, we want to pay a tribute to the

work of de Siebenthal [8,9] by showing that, as in the restricted cases he

considered, the principal subgroups he defined play a key role in the general

case.

Let us briefly describe our main result. For G0 and T as above, let

£ £(r, G0) denote the set of equivalence classes of extension of T by

G0. To a given class corresponds an "outer action", i.e. a homomorphism
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y>: r -4 Out(Go), where Out(G0) is the group of outer automorphism of G0.

Let Z0 denote the center of G0 (recall that Z0 is the direct product of a

finite abelian group and a torus); by "restriction", p gives rise to an action

on Z0, i.e. to a homomorphism (p : T -4 Aut(Z0). As explained in Section 3,

the classical theory of group extensions applied to this particular case shows

that the set £ corresponds to the disjoint union

£ £(T,G0)^ ]J 4(T;Z0).
cp G Horn(r, Out( G0

For a G Out(Go), let â G Aut(Z0) denote the restricted automorphism.

A cohomology class u G H^ÇT; Z0) will be canonically identified with

the corresponding equivalence class of extensions and will be denoted by

u [zo4z4rj. In Section 4, we show that the map

((a,/3),w) '—>(a,ß).u

defines an action of Out(G0) x Aut(r) on the set £. Using principal subgroups,

we then prove that this action allows us to pass from up to equivalence of
extensions to up to isomorphism of Lie groups, as stated in the following
theorem.

Main Theorem. Two compact Lie groups GUl and GUl are isomorphic

if and only if the corresponding cohomology classes u\ G (F; Z0) C £

and u2 G H^2(T;Z0) C £ are in the same orbit under the action of
Out(Go) x Aut(r).

Remark 1.1. It is well-known that there exists only a finite number

of non-isomorphic compact Lie groups of given dimension and number of
components (see [23], Theorem 5.9.5). In particular, the number of orbits in
the Main Theorem is always finite.

Note. The Main Theorem is straightforward for the case in which G0 is

abelian, i.e. the connected component is a torus. So, for the rest of this work,

we will always suppose that G0 is nonabelian.

The paper is organized as follows. Section 2 is based on the work of
de Siebenthal. It recalls the notion of principal subgroup and gathers results

related to nonconnected compact Lie groups. As already mentioned, the theory
of group extension is applied to our situation in Section 3. In particular, it

ßoa ßov4 z ^ r
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is shown that centralizers of principal subgroups are extensions of T by the

center Z0 of G0 that completely control the situation. The Main Theorem is

proved in Section 4 and as an illustration, two examples are then given. The
final section relates the approach taken in the present work with the natural

question of the splitting of the extension associated to a compact Lie group.
As an application of principal subgroups, a revisited "Sandwich" Theorem is

proved. Particular cases where the extension is always split are also described,
and, finally, a "minimal" extension failing to be split is exhibited.

Acknowledgments. The material in this note is taken from my Ph.D.
thesis [13]. It is a pleasure to thank warmly my advisor Professor U. Suter for
his guidance and constant encouragement. I am also indebted to M. Matthey
for his careful reading of an earlier version of this paper and for his useful
comments.

2. Compact Lie groups : a review

In this section, we recall the existence of subgroups of G whose

related extensions have close relationships to that corresponding to G.
First, we introduce more notation. Let I be a fixed maximal torus in
G0, and let LT denote its Lie algebra. Let B be a basis of the root

system R R(G0,T) of G0 associated to T. Let TL denote the maximal

semisimple ideal of the Lie algebra LG0 of G0 ; the principal diagonal
of G0 with respect to B is the 1-dimensional subspace given by D(B)

{XeLT : a(X) ß(X), for all a,ße B}nTL C LT. The image A A(B)
exp(D(B)) of this subspace under the exponential map is easily seen to be a

closed subgroup of T, isomorphic to the circle group S1. With a slight abuse

of language, we will also call this subgroup a principal diagonal. *We are now

ready to recall the definition of one of the key notions of the present work.

Definition 2.1 (de Siebenthal). A principal subgroup of G0 (associated

to T) is a connected closed subgroup H such that H is not contained in any

proper connected closed subgroup of maximal rank, and such that À(B) c H
for some basis B of R.

The work of de Siebenthal shows that any compact Lie group possesses a

principal subgroup of rank 1, thus isomorphic to SU(2) or SO(3), and that

two such principal subgroups are conjugate [8].
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Note. For the rest of this work, "principal subgroup" will always mean

principal subgroup of rank 1.

Before stating the main result of this section, which is a direct consequence

of the results of de Siebenthal, we introduce three subgroups of G. Let Ht
be a principal subgroup associated to T, and let Z Zq(Ht) denote its

centralizer in G. This subgroup will play a crucial role in the paper. Let

also N Ng(T) be the normalizer of T in G. We will use the convenient

notation N0 — NGo(T) f°r intersection of N with G0, but one should not

be confused, N0 is not connected (its group of components being the Weyl

group of G0). Finally, we will consider the centralizer Q ZG(A) in G of a

principal diagonal A.

THEOREM 2.2. For any compact Lie group G there exists a commutative

diagram
z0t ^zi i »

rc ^ r
1 1 II

iv0c s- n ^ ri i H

Go*-G — r
where each row is a group extension.

Proof The centralizer of Ht in G0 is equal to the center Z0 (by a theorem

of Borel and de Siebenthal [3], this property characterizes the closed subgroups

of G0 that are not contained in any proper connected closed subgroup of
maximal rank [5, Ex. 15, p. 116]). As Z intersects every component of G

([8], Théorème 4, pp. 253-254), we get an extension Z0 ^ Z -» T. The other

statements are deduced from the fact that Ac T contains a regular element,
i.e. an element that is contained in exactly one maximal torus, namely T in
the present case (see [12] or [17] for more details).

Remark 2.3. We call the subgroup Q an extended maximal torus of G.
These subgroups share some important properties with maximal tori : they are
all conjugate, and fixing one of them, its conjugates by the elements of G0

cover the whole group G. They appear in the literature under various disguises
(see for instance Oliver [19], Section 1, and Segal [22], §4), as explained
in [12].
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In the final section, we will see how the splitting of the extension associated

to G is related to the splitting of the extensions associated to N and Q that

appear in Theorem 2.2.

We end this section by recalling a very important result relating the inner,

"usual", and outer automorphism groups of a connected compact Lie group.
This result is one of the main reasons why the case of compact Lie groups is

well controlled when applying the theory of group extensions, as we will see

in Section 3. For the proof, we refer to de Siebenthal [9, Théorème, pp. 46-47]
(for another approach consult Bourbaki [5], §4.10).

THEOREM 2.4 (de Siebenthal). Let G0 be a connected compact Lie group
and let H C G0 be a principal subgroup. Then the extension

Inn(G0) A Aut(G0) A Out(G0)

is split, i.e.

Aut(G0) Inn(G0) x Out(G0).

A possible splitting is given by s: Out(G0) -A Aut(G0), where s(a) is the

unique automorphism in fixing H pointwise.

Remark 2.5. The fact that the extension associated to Aut(G0) is split
was known before the work of de Siebenthal, at least in the semisimple case,

and appeared in a paper of Dynkin [10].

3. Compact Lie groups and extensions

We assume knowledge of the classical relationship between group extensions

and related cohomology groups of low degree, as first introduced by
Eilenberg and Mac Lane [11]. For readers not familiar with it, the textbooks

by Mac Lane [16], Robinson [21], or Adem-Milgram [2], provide a thorough

treatment; a more concise approach can be found in Kirillov's book [15], and

a sketch in Brown's [6]. We now want to apply this relationship to the case

of compact Lie groups. We fix a nonabelian connected compact Lie group
G0, a finite group T, and a homomorphism p: F -A Out(G0). Recall that

Z0 denotes the center of G0. Choosing a principal subgroup H c G0 and

fixing s as in Theorem 2.4, we get the commutative diagram
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r —^ Out(G0) —^ Aut(G0)

Aut(Z0) Aut(Zo)

In the sequel, we will use the notation a1 — (s o p)(7), for 7 G T. Let

£(I\ G0,</>) C £ denote the subset of equivalence classes giving rise to <p. In

the particular case of compact Lie groups, one has the following results.

Proposition 3.1.

(i) The set of equivalence classes of extensions £(r, G0,v?) is in bijection
with the cohomology group H^(T;Z0).

(ii) For all u G H^(T;Z0) the corresponding extension G0 G -» T
carries a natural structure of Lie group.

Proof It suffices to check that £(T: G0,p) / 0 to prove (i). But this

follows from Theorem 2.4: the semidirect product G G0 y\soipT exists

for any ip. The second statement is easily deduced from classical Lie group
theory.

The bijection in the latter proposition is not canonical, as it depends on
the choice of a particular element in £QT, G0,<p). On the other hand, there is a

canonical bijection between H^(T;Z0) and the set £(r,Z0,<^) of equivalence
classes of extension of T by Z0 with action given by (p. Therefore, there
is a bijection A: £(T,Z0,(p) —>• £(T, G0. p) still depending on the previous
choice. Let us describe this bijection by first expliciting the cohomology group

I H^(T;Z0) Z^(r; Z0)/B^(T; Z0). Keeping the multiplicative notation in Z0,
îi the cocycles, i.e. the elements of Z^(T;Z0), are functions h: T x F —» Z0

satisfying h(jue) h{e. 72) e (normalization), and

: (<5/i)(7i,72,73) all(^(72,73»• Â(7i72,73)_ï • ä(7ii7273) • ^(7i,72)_1 e

I for all 71,72,73 r. The coboundaries, i.e. the elements of ß|(T;Z0), are
functions h:Tx T -» Z0 such that there exists a function T -* Z0, with
k(e) - e, satisfying

j Hl\,72) - 72) - c7l 72)) • /c(7i72)_1 • £(71)

I for all 71,72 G T. Let us choose the semidirect product G0 xT associated to the
j section .y as the extension corresponding to the neutral element in 7/|(T; Z0).
I Then, for u[/z] £ H^(F;Z0), the corresponding class of extensions is
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given by [G0 <-> Gh -» T], where Gh is the G0 xT equipped with the

multiplication

C 9,7)*hig',7') (5 • v-tig') • Ki, 7'), 7 • 7')

(see [16], Chapter IV, §4 and §8). We will also denote by G0 ^ Gu -» T

any representative of the class of extensions corresponding to u G H^(T; Z0).
We now give a canonical description of the inverse of A, i.e. a description
that does not depend on the choice of a particular element in £QT, G0, tp).

LEMMA 3.2. For any principal subgroup H in G0, the map

0: £(T,G0,(p) —* £(r,Z0,<p), [G0 ^G^T] 1—> [Z0 ZG(tf) -» T]

is the inverse of A (and does not depend on the choice of H). In particular
it is a bijection.

Proof As centralizers of principal subgroups are preserved by isomorphisms

of G, 0 does not depend on the choice of a representative in
[G0 G -» T]. Let u [Z0 Eh -» T] [h] G H~(T,Z0). Then, we have

the commutative diagram

z0c > Eh ^ rr\

G0C G — Gh —^ r
where Eh is Z0 x T as a set. Let us show that Eh Zch(H), H being the

principal subgroup of G0 corresponding to the fixed section s. By Theorem

2.2, it is enough to check that Eh is contained in ZGh (H). Let (z, 7) G Eh

and (x,e) G H c G0 C Gh- We calculate

(z, 7) *a (*J e) (z • <j7(x) • Ä(7, e), 7)

(z • X, 7),

and

(x, e) (z, 7) (x • <Te(z) • h(e, 7), 7)

(x-Z, 7)

(***, 7).

by normalization, and because the restriction of <r7 to H is the identity by
the choice of the section s.
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Now, as the principal subgroups are all conjugate by an element of G0 (see

[8], Théorème, pp. 46-47), so are their centralizers. Therefore, the extensions

Z0 Zg(H) -» T, for H running through the family of principal subgroups,
all belong to the same class. This shows that 0 is well defined and satisfies

0 o A idg(r,z0,{p). As A is bijective, this shows that 0 A-1.

We summarize the situation exposed in this section.

Theorem 3.3. Suppose given G0, a homomorphism p: T -A Out(G0)
and an extension Z0 s- Z T, for which the homomorphism T -A Aut(Z0)
coincides with (p. Then, up to equivalence of extensions, there exists a unique
compact Lie group G fitting into the commutative diagram

z0c ^ z ^ rO Or>

\ >

c " C ^ z- _ T-
'O " > 1

Inn(G0)c ^ Aut(G0) ^ Out(G0)

where the rows are group extensions. Moreover the given data allow the
construction of an extension G0 <—) G T, in which the subgroup Z is the
centralizer of a principal subgroup.

Conversely, the class of the extension Z0 Z -» F in G0 ^ G -» T can
be recovered by taking the centralizer of any principal subgroup.

4. Proof of the Main Theorem and examples

We are almost ready to show that the map described in the Introduction
is an action of Out(G0) x Aut(r) on the set

II
y?EHom(r,Out(G0))

We first introduce some notation. For an element in a group K, we
will write cgfor conjugation by g, i.e. gxg~l, for all jc in
For a E Out(Gr0), we will choose o: E Aut(C?0) such that 7r(cr) cv,
and we will denote the restricted automorphism by à g Aut(Z0). Finally,
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recall that a cohomology class u G H^(T;Z0) is canonically identified
with the corresponding equivalence class of extensions and is denoted by

r u v
u — ZQ c—y Z —»

Lemma 4.1.

(i) The map Out(G0) x S -G S, (a, w) i-G u.a a*(w)
iioa,Z0U z

defines a right action. 77ze image a*{u) corresponds to the extension

G0 ^ G -5* r, aad belongs to H\(T;Z0) C 5, where vp ca-i o (p.

(ii) 77z£ map Aut(r) x £ —£, (/?, a) ß w /?*(«) —
az04z

defines a left action. The image ßfiu) corresponds to the extension G0 c—>

ß°P 9G -» r, aaJ belongs to H^(T\Z0) C 5, where 6 — (p o /3 L

Proof As the proofs of the two parts of the lemma are very similar, we

only treat the first one. Consider the following commutative diagram:

?o

Y

Go

Inn(G0)c

7 C
Go

Y

GoC

Z ZC(H)

— G

Aut(Go) —^ Out(Go)

The principal subgroups are preserved by isomorphisms. As a_1(/7) is

clearly centralized by any element in Z, the statement about which extension

corresponds to a*(u) follows from Theorem 3.3. At the same time, this shows

that the map is well defined. It is then straightforward to check that it is a right
action. For the resulting homomorphism, we choose a set theoretic section

v: T -ï G of p:G^r, and compute for 7 G T :

^(7) *"((* oa)~l o cv{l) o (;i o aj)
Tï(a~l o (r1 o cV(7) o /) o a)
7r(a?)-1 o 7T(/

1
o cv(7) o /) o 7r(a)

a-1 o 75(7) o a

(Ca-1 o </o)(7).
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Clearly for u e S and a corresponding representative G0 ^ Gu -» T,

we have G„ Ga*(u)Gf1Jul for all a G Out(G0), ß G Aut(r). Moreover,

it is clear that the two actions commute and so we get a left action of

Out(G0) x Aut(r) on £. Elements in the same orbit represent isomorphic

groups ; the main result of this paper, stated in the Introduction, tells that the

converse is true.

Proof of the Main Theorem: Let p: GUl -A GU2 be an isomorphism of

compact Lie groups. As the connected component of the identity is preserved

by an isomorphism, this gives rise to the commutative diagram

Let us define a ir(p) G Out(G0) and ä p\z0- As the centralizers of

principal subgroups are preserved by isomorphisms, and by Theorem 3.3, this

induces a new commutative diagram that we write as follows :

Thus, by Lemma 4.1, we have u2 (a + and so u\ and u2 are in
the same orbit.

Remark 4.2. The extension Inn(G0) Aut(G0) A* Out(G0) is split;
however, other facts are relevant for allowing in the Main Theorem the passage
from up to equivalence to up to isomorphism. The crucial point is that the

class of extensions of the center of the connected component of the identity
G0 can be represented by subgroups of G, namely centralizers of principal
subgroups, that are preserved by isomorphisms and all conjugate by elements

in G0. This also raises two natural questions : are there larger classes of
groups for which the Main Theorem holds, and also, can one find explicit
examples for which it fails (even when supposing that the extension relating
the automorphism groups of the kernel of the extension is split)
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Before proceeding with two examples, we introduce notations for three

elements of the group SU(2), which will also appear in the final proposition of
the paper. We denote the identity matrix by 1 and we set — 1 diag(— 1, —1).
We also set

Example 4.3. We take G0 SU(2) and r Z/2. As Out(G0) is trivial
and Z0 Z/2, we have

£(Z/2, SU(2)) « ]J H%{Z/2; Z/2) Z/2; Z/2) ^ Z/2.

The group Out(G0) x Aut(T) being trivial, these two elements correspond
to two non-isomorphic compact Lie groups. The first one is clearly GUq

SU(2) x Z/2. Let us give a description of the second one. Conjugating a

matrix in SU(2) by j amounts to taking the complex conjugate of each entry
in the matrix, i.e. Cj : SU(2) -a SU(2), g i-a cj(g) g. Let us denote by
GUi — SU(2) Xj Z/2 the semidirect product where the generator t of Z/2
acts as Cj on SU(2). As the center of GU{ is given by ((/, t)) Z/4, GUo

and GUl are non-isomorphic. Therefore GUl is the second compact Lie group
that we were looking for.

It is clear, from what has been done so far, that the elements in H^(T; Z0)
and in H^(T;Z0), with i/j — ca-i o <p, will be identified (at least) pairwise
under the action of the element a G Out(G0). The second example is intended

to show that identifications can even occur inside a given cohomology group
(i.e. without changing the "outer" action of T on G0).

Example 4.4. We take G0 SU(2)xSU(2) ^ Spin(4) and keep r Z/2.
The outer automorphism group is given by Out(G0) (r), where r is the

automorphism that exchanges the two factors, i.e.

t: SU(2) x SU(2) —a SU(2) x SU(2), (g,h) ^ (h,g),

and Z0 Z/2 x Z/2. We thus have

£ (Z/2, SU(2) x SU(2)) « ]J H^(Z/2 ; Z/2 x Z/2)

VHom(Z/2,0)

VPHom(Z/2,Z/2)

H2(Z/2; Z/2 x Z/2) E H|(Z/2; Z/2 x Z/2)

« (Z/2 x Z/2) II {0}
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One then verifies that as extensions of the center, i.e. as centralizers of a

principal subgroup, these five non-equivalent extensions are in fact represented

by only three non-isomorphic groups, namely

ZM0 ^ Z/2 x Z/2 x Z/2
Zu, — Z/2 x Z/4
Zu2 Z/2 x XIA

ZW3 9* Z/2 x Z/4

for the elements of Z72(Z/2;Z/2 x Z/2)), and

ZV0 ^ (Z/2 x Z/2) x Z/2 9* D8

(where D8 denotes the group of symmetries of the square) for the element

of #^(Z/2;Z/2 x Z/2). The group Z/2 x Z/4 yields three non-equivalent
extensions, because among its three elements of order 2, only one is divisible

by 2 (the element (0,2) in additive notation). Therefore, this element

must be characteristic and changing the non-trivial element of Z/2 x Z/2
that is mapped to it gives three extensions that must clearly be non-
equivalent. At the level of Lie groups, the five non-equivalent extensions

are represented by

GUo SU(2) x SU(2) x Z/2
GUl (SU(2) x SU(2)) y\jXid Z/2
GU2 (SU(2) x SU(2)) >\idxj Z/2
GU3 (SU(2) x SU(2)) xjxj Z/2
GVo (SU(2) x SU(2)) xr Z/2.

(One checks that (-1,1, e) corresponds to the characteristic element of
order 2 in ZU{ whereas it is (1,-1, e) in ZU2, and therefore GUl and GU2 are
certainly not equivalent.) Finally, the group Out(G0) x Aut(r) Z/2 acts on
this set of equivalent extensions, and it is clear that the only non-trivial orbit
is {GUnGU2}. Therefore there are four non-isomorphic extensions of Z/2 by
SU(2) x SU(2) Spin(4).
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5. Splitting of the extension
ASSOCIATED TO A NONCONNECTED COMPACT LIE GROUP

Let G still denote a compact Lie group with a nonabelian connected

component; we also assume the other notations introduced previously. In this
final section, we make a few observations on the following problem: when
is the natural extension associated to G split, i.e. when is G isomorphic
to a semidirect product G0 x T Our aim is to relate this problem to the

rest of this work. For a deeper analysis one should consult Chapter 6 in the

book by Hofmann and Morris [14]. We start with a structure theorem for
compact Lie groups based on centralizers of principal subgroups, similar to
the "Sandwich Theorem for compact Lie groups" (see [14], Corollary 6.75,

p. 272). This theorem shows that any compact Lie group is "sandwiched" in
between two semidirect products closely related to it. We then recall a theorem

of de Siebenthal and compare, in some particular cases, the question of the

splitting of the extension associated to G to that of the extensions associated

to the normalizer N of a maximal torus and to the centralizer g of a principal
diagonal, both introduced in Section 2. As an application of the "Sandwich"
Theorem, the final proposition presents a "minimal" compact Lie group G

such that the associated extension is not split.
Let G0 denote the adjoint group G0/Z0 ; it is well-known that the center

of G0 is trivial.

THEOREM 5.1. Let G be a compact Lie group with a nonabelian connected

component. Then there exist two surjective homomorphisms

G, G0xiZ^ G G G/Z0 ^ G0 x T,
(9ù,z)I—g0 -z

where the centralizer Z of a fixed principal subgroup acts on G0 by

conjugation, and where 7T2 is the canonical projection corresponding to the

normal subgroup Z0 of G.

For the kernels, we have ker7ir Z0 and ker7r2 Z0 ; in particular

G (G0 xi Z)lZo and G/Z0 G0 x F.

Proof As G0 is centerless, G must be isomorphic to G0 x T by the

proof of Proposition 3.1. The other assertions about tt2 are clear.

The map tti is well-defined and surjective (because Z intersects every

component of G). Straightforward computations show that it is a homomor-

phism and that ker tt\ Z0.



NONCONNECTED COMPACT LIE GROUPS 81

Remark 5.2. 1) The component of the identity of Gs is equal to G0 if
and only if G0 is semisimple.

2) The present version of the "Sandwich" Theorem has the advantage of
being more explicit than the one in [14] (the result therein is an existence

theorem). Its drawbacks are the fact that Z is not finite if G0 is not semisimple,
and that it obviously makes no sense for compact Lie groups with an abelian

connected component.
fj, V

3) Given a homomorphism ip : T —>• Out(G0), and an extension Z0 c-» E T
for which the action coincides with the "restriction" (p, there is a more direct

way than the cohomological one to recover the corresponding compact Lie

group G, i.e. the one that fits into the commutative diagram

z0c > e ^ rH O

\ f \

g0( g ^ r
Let us define the composition ä:EAr -4 Out(G0) A Aut(G0), where is

as in Theorem 2.4. Then by Bourbaki (see [4], Lemme 7, pp. 210-211), we
have

G (G0

where AZ0 is the image of the injection z0 (z~ 1, /i(z0)) Taking E Z,
this gives another proof of the assertions concerning tti in Theorem 5.1.

Using Cartan subgroups (in the sense of Segal [22], i.e. those Adams called
"SS subgroups" in honour of Segal and de Siebenthal [1]), de Siebenthal gave
some explicit sufficient conditions for the splitting of the extension associated
to G ([9], Théorème p. 74).

Theorem 5.3 (de Siebenthal). Let G be a compact Lie group with G0
simply connected, or of adjoint type (i.e. Z0 trivial). r0(G) cyclic
then G is a semidirect product, i.e. GG0 xT.

A relationship with the splitting of the extension associated to the
normalizer of a maximal torus A in G is given in the next proposition.

Proposition 5.4. If the group of components T of G is nilpotent, then
the extension G0<-yG-» Yis split if and only if the extension <-» -» T
is split.
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Proof. The "if" part is clear. Conversely, let s: T G be a section.

By a result in Bourbaki (see [5], Corollaire 4, p. 49), any nilpotent subgroup
of a compact Lie group is contained in the normalizer of some maximal
torus. Therefore, if needed after conjugation by an element in G0, we have

s(T) c N, and we can conclude that the extension associated to N is split.

For an extended maximal torus Q, the extensions can be related as follows.

PROPOSITION 5.5. If the group of components T of G is cyclic, then the

extension G0 G T is split if and only if the extension T ^ Q -» T is

split.

Proof. The proposition readily follows from the fact that the conjugates
of Q cover G.

Remark 5.6. This latter proposition fails in general. An obstruction to
the splitting of the extension associated to the extended maximal torus Q can
be found in a paper by Oliver; this obstruction involves the representation
ring of G and its relation with the family of all p-toral subgroups of G (see

[19], Corollary 3.11). In particular, Oliver constructs a compact Lie group
G SU(2) x(Z/2xZ/2xZ/3) such that the extension corresponding to the

extended maximal torus Q is not split ([19], pp. 376-377).

We conclude with the promised example.

PROPOSITION 5.7. Let Dg (r,s\r4 s2 e, srs~l r_1) be a
presentation of the dihedral group. Then the quotient

G (SU(2) x D8)/AZ/2,

where ÀZ/2 denotes the central subgroup generated by (—1, r2), is a compact
Lie group with G0 SU(2) and T Z/2 x Z/2, the A-group of Klein. The

associated extension

SU(2) ^G^Z/2x Z/2

is not split. Among the extensions associated to a compact Lie group with

a nonabelian connected component, it is a minimal one having the property
of being non-split, in the sense that the rank of the connected component
and the size of the group of components are minimal. Moreover replacing the
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connected component by SO(3) (i.e. by "any" group of the same rank), or
the group of components by 7j/4 (i.e. by "any" group of the same size), will
force the extension to be split.

Proof The assertions about the connected component and the group of

components are clear. Let us show that the extension associated to G is not

split. Let us denote [g, 7] G G the image of (g, 7) G SU(2) x D8 under the

canonical projection. Let S1 denote the standard maximal torus in SU(2), and

let N denote its normalizer in G. We have

N {[t,e] : t S1} II {[jt, e] : t e S1} II {r] : t E S1} II {\jt, r] : G S1}

II { [t,s]:t G S1} II {[//, ä] : teS1} II {ra] : / G S1} U { ra]:feS'}.
By contradiction, suppose that the extension associated to G is split, i.e. there

exists a section. As Z/2 x Z/2 is abelian, thus nilpotent, we deduce, by
Proposition 5.4, that the extension associated to N is also split. We want
to show that this is not possible by considering the elements of order 2 in
N. For n — 0,1, a straightforward calculation shows that in the component
corresponding to rns, an element [£, rns] is of order 2 if and only if t ±1,
and that the sub-component {[jt,rns] : t G S1} does not contain any element

of order 2. Two of the three non-trivial elements in T Z/2 x Z/2 must thus
be mapped by the section to [d=l,^] and fzbl,^]. Therefore, as the section
is a homomorphism, the image of the third non-trivial element is

[±frs].[±fs] [±l,r]
which is not of order 2. A contradiction that shows that the extension associated

to G is not split.
The property of minimality follows by Theorem 5.3, and by the fact that any

extension with SO(3) as normal subgroup is a direct product (because SO(3)
is complete, i.e. centerless and with trivial outer automorphism group).
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