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240 S. CANTAT

à savoir: quelles sont les variétés complexes compactes qui possèdent un
endomorphisme holomorphe de degré topologique strictement supérieur à 1

2.1 Dimension de Kodaira

La dimension de Kodaira d'une variété complexe compacte M est un
nombre entier kod(M), éventuellement égal à — oo, qui peut prendre les

valeurs —oo,0,l,2,..., dime (M). Elle est définie de la manière suivante.

Si L est un fibré en droites holomorphe sur M, H°(M,L) désignera le

C-espace vectoriel constitué des sections holomorphes globales de L. La
dimension de ce C-espace vectoriel est finie.

Soit x un point de M et L la fibre de L en ce point. L'évaluation des

sections de L au point x détermine une application linéaire 6lx : H°(M, L) Lx.
Cette application est identiquement nulle lorsque toutes les sections globales
de L s'annulent en x; on dit alors que x est un point base de L. Une fois
fixé un isomorphisme de Lx avec la droite vectorielle C, 6ix s'interprète
comme une forme linéaire et celle-ci ne dépend du choix de l'isomorphisme
C ~ Lx que par un facteur multiplicatif. En tout point x de M qui n'est pas

un point base de L, on obtient ainsi un élément [6Lx] de l'espace projectif
P(H°(M,L)*). Pour les fibrés en droites qui possèdent au moins une section

non nulle, ce procédé détermine une application méromorphe

(1) ©£,: M—> P(H°(M,L)*)

dont les points d'indétermination sont contenus dans les points bases de L.
Pour chaque entier strictement positif k, cette construction peut être répétée

en remplaçant L par la puissance tensorielle L®k. La dimension de Kodaira-
Etaka de L est alors définie comme le maximum des dimensions des images

(3L®k (M) :

(2) kod (M, L) max { dime (0l®*(M)) }

en convenant de poser kod(M,L) —oo si aucune puissance positive de L
ne possède de section non nulle.

La dimension de Kodaira de M, kod (M), est la dimension de Kodaira-

Iitaka du fibré canonique de M, noté Km et défini comme le déterminant

du fibré cotangent de M : KM — det(T*M). Les sections holomorphes de

Km sont donc les formes holomorphes de degré maximal. Les applications

méromorphes 0* := 0^<s>* sont appelées «applications pluricanoniques».
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