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A NOTE ON THE HOPF-STIEFEL FUNCTION

by Shalom Eliahou*) and Michel Kervaire

Introduction

In the preceding paper of this volume [P], Alain Plagne gives a formula

for the (generalized) Hopf-Stiefel function ßp.

Given a prime number p, and two positive integers rys, recall that ßp(r,s)
is defined as the smallest integer n such that (x + y)n G (xr,/), where (xr,/)
is the ideal generated by xr and / in the polynomial ring Fp[x,y].

Plagne's theorem reads

THEOREM 1. Let r,s be positive integers, then ßp(r,s) is given by the

formula

In [P], this formula is derived as a corollary of a theorem on Additive
Number Theory, Theorem 4, which is the main result of the paper.

Here, we give another proof of Theorem 1 using a purely arithmetical

argument.

Recall from [EK, p. 22], where ßp(r,s) was introduced, that this function
can be described in terms of the p-adic expansions of r — 1 and s — 1 as

follows.

(1)

* During the preparation of this paper, the first author has partially benefited from a research
contract with the Fonds National Suisse pour la Recherche Scientifique.
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Theorem 2. Let r — 1 Xw>oa'1 Pl an^ s ~~ 1
o hpl be the

respective p-adic expansions of r — 1 and s — 1, with 0 < bi < p — 1

for all i.

Define the integer k as the largest index for which ajc + bk > p, if any
exists. Otherwise, that is if at + bi < p — I for all i > 0, set k — 1.

Then, ßp(r,s) is determined by

(2) ßP(r, s)
r — 1

nfc+i

s — 1

n&+i
1 p

k-\-1

Although the point of Plagne's paper is to stress the relationship of his

formula with Additive Number Theory, it is interesting to note that (1) also

admits a direct proof using the above Theorem 2.

This is the content of the next section. In Section 2, we provide a simple

proof of Theorem 2.

1. Deriving Theorem 1 from Theorem 2

It is very easy to understand the relationship of the floor-function |_£J, or
integral part of £, appearing in Theorem 2, with the ceiling-function [£], the

smallest integer at least as big as £, used in formula (1).

The main object of this section will be to locate the minimum over £ > 0

of the expression (Jp-j + — 1 ^jPl and to show that this minimum is

attained at £ k + 1 with k as defined in Theorem 2.

For every index £ > 0, we have

n
1 + E;=o'

<
1 + EtoV ~ 1)P'

O \ n _ o * •

Since r 1 + Xw>o > h follows that

+ 1.

i>0

Similarly, we have 0 < =°£
lP < =Qpt — < 1

»
and

(3) r- 1

ai+£pl •

i>0
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Hence,
r

P£

r-1 + 1.

Applying the same formulas to s, we have 5 - K1¥ LP
+ 1. Hence,

T s \ / r-l S — 1

+ 1)I + -1 pl o + P
V P£ pe / V

_
P _ _

P - /

(M+ M !)j
for every £.

It remains to locate the minimum of the expression

as a function of £.

If ai + bi<p-l for every i> 0, then (|^j + |^| -1 pe is a weakly

increasing function of £ > 0. Indeed, the equation

r S
T + ~ö

P£
i +bi+i)pi +1

i>0

yields for £ < I'

+ -1 / - + -1 P

- (1 + Y(ai+i> + bi+(.>)p')pe'~(1+ + bi+e)p')pe

i>0 i>0

=/'-/- y a<+ -p] )p' =0
t<i<l'

Thus, in the case where k -1, the minimum of + |"^"j - l) Pl is

attained at £ 0 and min£>0 { + 1^ r+s— 1, as desired.

If there exists an index k > 0 such that ak+bk >p and 0 < cii+bi < p—\
for k < i, then the above calculation shows that (|"^j + |"^J — l)p£ is a

weakly increasing function of £ for k + 1 < £.

On the other hand, for £ < k, we have

+ -1 /" nk+1 r)k-\-1
1 )Pk+1

=pf - pk+x + Y(+bi)pi -pl k+ 1 _J:+1+ =pz>0.
£<i<k

Therefore, even though the function ^"j + ["^ ~^jP£ need not be

monotonously decreasing in the interval 0 < £ < k, and it actually is not in
general, it still does take its minimum at £ — k-\- 1.
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Consequently, in both cases k — 1 and k > 0, we have

1
mm I

£>o

r r
II1 r — 1 s — 1

+1)
P£

+
P£ i

+
i

+
pk+ 1

Now, Theorem 2 tells us that

r- 1
1

S — 1

pk+ 1 m
pk+1

+ 1 Pk+1ßp(r, s)

and Theorem 1 follows.

2. Proof of Theorem 2

As noted in equation (3) of Section 1, | | J2i>k+i aiPl (^+1)

s-l V W~"(*+1)2-ji>k+i °iPSimilarly,

By definition of k, we have at + bi < p — 1 for i > k + 1 and thus the

right hand side of the equation

r- 1

nk+1 +
.V — 1

nk+1
(fl/ +

/>£+!

is the p-adic expansion of the left hand side.

For the purpose of the proof of Theorem 2, set

(4) w r- 1

VP,fc+1 +
s — I
ßl+b

„k+1p.. '. (a. + _

i^ fc-|-1

We proceed to show that w + pk+l is the smallest integer n such that

(x+y)n belongs to the ideal (xr,y5) xrFp[x,y]-{-ysFp[x,y] in the polynomial
ring Fp[x,y]. That is w + pk+l ßp(r,s).

We first calculate (x + y)w in the quotient algebra of Fp[x,y] modulo

(xr,ys). We have from (4)

cii+bi

(x + y)w []
i>k+l Ci=0 ^ *

We claim that

(5) (x + y)* n
<•>4+1

a,- + bi

di
^P'ybip' JJ

i~+k+1

ai + bi^f
a> '

modulo (+'",/), where u J2l>k+l a,pl and v J2i>t+i
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Indeed, since + bt < p — 1 for i > k + 1 by definition of k, the

expressions c X)i>*+i ctpl and J Yli>k+Mi + ~~ are the /?-adic

expansions of c and d respectively.

If for a given c, there is an index i>k + 1 for which q is not equal to

at, denote by I the largest i such that c% / a^.

If ci < ag and q at for i > £ + 1, this implies at + bi — q > and

a/ + bt - ^ bi for / > I + 1. Therefore we have

d > (a,- + - Ci)pl + pe +btp' > j.
£+l<K!-l Z>^

Thus in this case the monomial xcy^ belongs to the ideal (xr,ys).
If, on the contrary, cs> > ag and ct — at for / > i + 1, this implies

C= E Ci/,i - E c,p' + + E
i>k+\ k+\<i<£-\ ï>£

Thus (.x + y)w is indeed given by formula (5) modulo (xr,y*).
Now, observe that the product of binomial coefficients 7=EU/c+i C76o

is non-zero in Fp and we can write (x + y)w 7 • xuyv modulo (xr,ys).
It is now easy to finish up the proof of the theorem:

• (x-h yf + +w — (xp
+

+ yP
+

)(x + y)w 7 • (xpk+l+uyv -j- jcuypk+l+v).

However, pk+l+ u1 + E<U(P " Pp'' + E;>r+i «iP' > 1 + (r - 1) r.
Similarly, //+1 + v > s.

Summarizing, (xyfk+l+w G (xr,ys) and thus

+
s — I
pk+1

+ lj/+1 > ßp(r,s).

-1
(x + 7 y^ (_1yV/+1-;-i)xy f

7=0

using (.v ;.vy':' 1 ^ +
' ES'^MW^-1 in Fp[x,y].

It is immediate to see that, calculating modulo (jcr,/), and with the notation
u0 ]£/=o and Z)/=o bi, we can restrict the summation over j to the
interval p*+1 - 1 - vq <j<u0:

Cj=u0
\

7=Pfc+1~ l~wo /
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Moreover, the monomials appearing on the right hand side are distinct,
have non-zero coefficient ±7 and form a non-empty subset of an -basis

of Fp[x,y]/(xr,ys). Indeed, on the one hand, pk+l — 1 — vo < uo in view of
the inequalities

uo + v0 + bi)pl > (ak + bk)pk and ak + bk>p,
i=0

and on the other hand j+u < wq+w r—1 and /?*+1 —j— l+v < vq+v s— 1.

If & — — 1, then wo ^0 0 and the above conclusion still holds.

Summarizing :

1

IP'1^+1

1

nk+i + 1 Pk+1 s),

and this completes the proof of Theorem 2.
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