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HYPERBOLICITY OF MAPPING-TORUS GROUPS AND SPACES

by Frangois GAUTERO

ABSTRACT. This paper deals with the geometry of metric ‘two-dimensional’ spaces,
equipped with semi-flows admitting transverse foliations by forests. Our main theorem
relates the Gromov-hyperbolicity of such spaces, for instance mapping-telescopes of
R -trees, with the dynamical behaviour of the semi-flow. As a corollary, we give a new
proof of the following theorem [3]: Let « be a hyperbolic injective endomorphism of
the rank n free group F,. If the image of o is a malnormal subgroup of F,, then
Go = Fy Xo Z is a hyperbolic group.

INTRODUCTION

The subject of 3-dimensional topology changed completely in the seventies
with Thurston’s geometric methods. His geometrization conjecture involves
eight classes of manifolds, among which the hyperbolic manifolds play the
most important role. In this context, a hyperbolic manifold is a compact
manifold which admits (or whose interior admits in the case of non-empty
boundary) a metric of constant curvature —1. According to another conjecture
of Thurston, any closed hyperbolic 3-manifold should have a finite cover
which is a mapping-torus. This gives a particular interest to these mapping-
tor1 manifolds. Recall that a mapping-torus is a manifold which fibers over
the circle. Namely this is a 3-manifold constructed from a homeomorphism
h of a compact surface X as

M = (Z x[0,1D)/((x, 1) ~ (h(x),0)) .

For these manifolds, the hyperbolization conjecture has been proved, see for
instance [25]: the manifold M constructed from X and & as above is hyperbolic

if and only if ¥ has negative Euler characteristic and 4 is a pseudo-Anosov
homeomorphism (see [12]).
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In parallel to these developments in 3-dimensional topology, there has
been a revival in combinatorial group theory. First introduced by Dehn at the
beginning of the twentieth century, geometric methods were reintroduced in this
field by Gromov in the 80’s. The notion of hyperbolicity carries over in some
sense from manifolds to metric spaces and groups. We then speak of Gromov
hyperbolicity. Such metric spaces and groups are also called weakly hyperbolic,
or negatively curved, or word-hyperbolic, see [19] as well as [16], [1], [8]
or [5] among others. Mapping-tori manifolds have the following analogue in
this setting: given a finitely presented group F = (S; R), S = {x1,...,Xu},
and an endomorphism « of F, the mapping-torus group of («,F) is the
group with presentation (xi,...,%,,t; R, " 'xit = a(x;), i=1,...,n). For
instance, if the 3-manifold M is the mapping-torus of (h,2) and if Ay 1S
the automorphism induced by %~ on the fundamental group of X, then the
fundamental group of M is the mapping-torus group of (h, 7 (X)). In fact,
in this case, since Ay 1s an automorphism of m(X), the mapping-torus group
is easily described as the semi-direct product (%) Xz, Z.

The main and central result in group theory concerning the preservation
of hyperbolicity under extension is the Combination Theorem of [3] (see
also a clear exposition of this theorem in [20]). Alternative proofs have
been presented since the original paper of Bestvina-Feighn ([18], [22]), but
concerning essentially the so-called ‘acylindrical case’, where the ‘Annuli Flare
Condition’ of [3] is vacuously satisfied. Gersten [15] proves a converse of the
Combination Theorem. At the periphery of this theorem, let us also cite [11]
and [24] about the hyperbolicity of other kinds of extensions or [23], which
shows the existence of Cannon-Thurston maps in this context.

As a corollary of the Combination Theorem, and to illustrate it, the authors
of [3] emphasize the following result: Let F be a hyperbolic group and let
a be an automorphism of F. Assume that o is hyperbolic, namely that there
exist m € Z and A € R, A > 1, such that for any element f of word-length
I(f) in the generators of F, we have max(l(am(f)),l(a_m(f))) > M(f).
Then F X, Z is a hyperbolic group. This corollary lives in a different world
than the above mentioned alternative proofs of the Combination Theorem,
namely it is ‘non-acylindrical’. No paper, except the original one of Bestvina-
Feighn, covers it. Swarup used it to give a weak hyperbolization theorem
for 3-manifolds [27]. Hyperbolic automorphisms were defined by Gromov
[19], see also [3]. From [26], if a hyperbolic automorphism is defined on
a hyperbolic group then this hyperbolic group is the free product of two
kinds of groups: free groups and fundamental groups of closed surfaces with
negative Euler characteristic. Hyperbolic automorphisms of fundamental groups




HYPERBOLICITY OF MAPPING-TORUS GROUPS AND SPACES 265

of closed surfaces are exactly the automorphisms induced by pseudo-Anosov
homeomorphisms. Brinkmann characterized the hyperbolic automorphisms of
free groups as the automorphisms without any finite invariant set of conjugacy-
classes [6]. Below we consider hyperbolic injective free group endomorphisms.
The notion of hyperbolic automorphism is generalized in a straightforward
way to injective endomorphisms. We give a new proof of the Bestvina-Feighn
theorem in this setting:

THEOREM 0.1. Let F, = (x1,...,X,) be the free group of rank n. Let «
be a hyperbolic injective endomorphism of F,. Assume that the image of o is
malnormal, that is w=! Im(a)wNIm(a) = {1} for any w ¢ Im(c) of F,,. Then
the mapping-torus group G, = <x1, Xt it =alx), i=1,... ,n> is
a hyperbolic group.

I. Kapovich [21] worked on mapping-tori of injective free group endomor-
phisms, trying to avoid the assumption of malnormality of the endomorphism’s
image. We consider the group given by its standard presentation of mapping-
torus group. Our proof relies on an approximation of the geodesics in the
Cayley complex of the group for this presentation. Let o be an automorphism
of F,. Let G, be the mapping-torus group of (a,F,). The above Cayley
complex for G, has a very particular structure. It carries a non-singular semi-
flow and this semi-flow is transverse to a foliation of the complex by trees. A
non-singular semi-flow is a one-parameter family (o;),cg+ Of continuous maps
of the 2-complex, depending continuously on the parameter and satisfying the
usual properties of a flow: o9 =1d, oy = 0,00y.

Let I" be a graph with fundamental group F,. Let ¢: " — I" be a
simplicial map on I' which induces « on the fundamental group of I". Let
K = @x[0,1])/((x,1) ~ (3(x),0)) be the mapping-torus of (1),T). Then K is
a simple example of a 2-complex equipped with a non-singular semi-flow. The
orbits of the semi-flow are the concatenation of intervals {x} x [0,1], x € T,
glued together by identifying (x,1) with (¢/(x),0). Moreover the 2-complex
is foliated with compact graphs I' x {¢} transverse to the semi-flow. The
universal covering of this 2-complex is the Cayley complex of G, for the
standard presentation as a mapping-torus group. Let us describe this universal
covering. The universal covering of I" is a tree T. Let QZ :T — T be a
simplicial lift of 1. That is, if 7: T’ — T is the covering-map, 1o = 7 0.
Since ¢ induces an automorphism on m(I'), the universal covering of K is

homeomorphic to the quotient of | | T x [n,n + 1] by the identification of
neZ
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(x,n+1) € Tx[n,n+1] with (p(x), n+1) € Tx[n41,n+2]. Such a topological
space is called the mapping-telescope of ({E, T). As a corollary of our main
theorem we obtain an analogue for mapping-telescopes of Thurston’s theorem
for mapping-tori of surface homeomorphisms. The structure of graph or of
2-complex which exists when dealing, as above, with Cayley complexes of
mapping-torus groups is irrelevant. We only require that 7 be a 0-hyperbolic
metric space, that is a geodesic metric space whose geodesic triangles are
tripods. Equivalently, such a T is an R-tree. We refer the reader to [2] or
[8] for the equivalence of these two notions and to [2] for a survey about
R-trees. Let us observe that Bowditch [4] refers, without further proof, to [3]
to state a theorem about the Gromov-hyperbolicity of mapping-telescopes of
R-graphs. A weak version of our result gives a complete proof of such a
result in the case of R-trees:

THEOREM 0.2. Let (T,dr) be an R-tree. Let J : T — T be a continuous
map on T which satisfies the following properties :

1) There exist u > 1 and K > 0 such that udr(x,y) > dr(px), %)) >
1
Ldr(x,y) —

2) There exist A>1, N> 1 and M > 0 such that for any pair of points
x, y in T with dr(x,y) > M, either dT(¢N(x),¢N(y)) > \dr(x,y) or

drQon, yv) > Adr(x,y) for some xy, yy with Y (xy) = x, PV (w) = y.

Then the mapping-telescope of (@Z, T) is a Gromov-hyperbolic metric space
for some mapping-telescope metric.

Let us briefly explain what a mapping-telescope metric is. Roughly
speaking, at each point in the mapping-telescope we can move in two
directions: along a leaf T x {¢}, or along a path which is a concatenation
of intervals {x} X [n,n+ 1], x € T. The lengths in the vertical direction are
measured using the obvious parametrization. We provide the trees 7 x {t}
with a metric. Then the mapping-telescope metric is defined as follows: the
distance between two points x, y is the shortest path from x to y among all
paths obtained as sequences of horizontal and vertical moves.

We deal with more general spaces than mapping-telescopes. The reader
will find in Section 4 the precise statement of our result. The spaces under
consideration are called forest-stacks. We only need on the one hand the
existence of a non-singular semi-flow and, on the other hand, the existence
of a transverse foliation by forests. We allow the homeomorphism-types of
the forests to vary along R. We refer the reader to Remark 13.8 for a brief
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discussion about direct applications of our main theorem, which we chose not
to develop here for the sake of a clearer and shorter presentation.

In Section 1, we give an illustration, and a proof, of our theorem in a very
particular case. Although very simple, the basic ideas of the sequel appear
here. Sections 2 to 11 form the heart of the paper. In Sections 2 and 3 we
define the objects under study. In Section 4 we state our theorem about forest-
stacks. The statements of the other results, concerning mapping-telescopes and
mapping-torus groups, appear in Sections 12 and 13. After some preliminary
work (Section 5), we study the so-called straight quasi geodesics in forest-
stacks equipped with strongly hyperbolic semi-flows (Sections 6 and 7). We
rely upon these last two sections to give an approximation of straight quasi
geodesics in fine position with respect to a horizontal one (Section 8), and
then in Section 9 to show how to put a straight quasi geodesic in fine position
with respect to a horizontal one. In Section 10 we gather all these results to
prove that straight quasi geodesic bigons are thin. We conclude in Section 11.
Building on this work, we give in [13] a generalization of the Bestvina-Feighn
theorem in the ‘relative hyperbolicity’ context.

ACKNOWLEDGEMENTS. The author acknowledges support from the Swiss
National Science Foundation. Warm thanks are also due to P. de la Harpe,
M. Lustig, T. Vust and, last but not least, to I. Kapovich who helped greatly to
simplify and make clearer the paper, in particular by suggesting Lemma 11.1.

Since they play the central role in this paper, we briefly specify what we
mean by Gromov hyperbolic metric spaces. Gromov introduced the notion of
(r,s)-quasi geodesic space in [19]: A metric space (X,d) is an (r,s)-quasi
geodesic space if, for any two points x, y in X there is an (r,s)-chain, i.e.
a finite set of points x = xg,X1,...,x = y such that d(x;_;,x;,) < r for

k
i=1,...,k and that Z d(xi—1,%) < sd(x,y). A quasi geodesic metric space

i=1
1s a metric space which is (r,s)-quasi geodesic for some non negative real

constants r, s. An (r,s)-chain triangle in a quasi geodesic metric space is a
triangle whose sides are (r,s)-chains. A chain triangle is §-thin, § > 0, if
any side is in the J-neighborhood of the union of the other two sides. We
say that chain triangles in an (r,s)-quasi geodesic metric space X are thin
if there exists a 6 > 0 such that any (r,s)-chain triangle in X is &-thin.
In this case, X is a Gromov-hyperbolic metric space; more precisely, X is
a d-hyperbolic metric space. In the entire paper, unless otherwise specified,
“(quasi) geodesic(s)’ means ‘finite length (quasi) geodesic(s)’.
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1. AN ILLUSTRATION

We start by considering a very particular case of our theorem. We feel
that this simple example might serve as an illustration of the later work. We
hope that this will help the reader to understand the contents and ideas of the
paper. Our aim is to prove the Affirmation stated below.

We choose a real number A > 1. We denote by d, the usual distance
on R. For any real r, we set d, = Mldy. The length |I|  of a real interval I
is the distance, with respect to d,, between the endpoints of 7. We consider
the plane R?>. We denote by p,: R> — R the projection on the x-axis and
by py: R* — R the projection on the y-axis. We denote by V, = p7!(a) the
vertical line through a point a. Vertical lines (resp. horizontal lines pj L)
are equipped with the distance dy (resp. with the distance d,). Lengths of
horizontal and vertical intervals are measured with respect to the distance
defined on the corresponding line. A felescopic path is a concatenation of non
degenerate vertical and horizontal intervals, where ‘non degenerate’ means not
reduced to a point. The horizontal (resp. vertical) length of a telescopic path
1s the sum of the horizontal (resp.vertical) lengths of its maximal horizontal
(resp. vertical) intervals. The telescopic length of a telescopic path is the sum
of its horizontal and vertical lengths. The telescopic distance between two
points in R? is the infimum of the telescopic lengths of the telescopic paths
between these two points. We wish to prove the following result:

AFFIRMATION. The plane R? equipped with the telescopic distance is a
Gromov hyperbolic geodesic metric space.

STEP 1: COMPUTATION OF THE GEODESICS. Let a, b be any two points
in R?. Let I, be the compact interval of the x-axis bounded by the projections
px(a) and p,(b) of a and b. Let g be any telescopic geodesic from a to b.
On the one hand, the length of a telescopic path is never shorter than the
length of its projection on a vertical line, so that g lies between V, and
Vp. On the other hand, if ¢ € I, the vertical line V, separates a from b,
so that g intersects V.. Therefore the telescopic geodesic g intersects all
the vertical lines separating a from b, and no other vertical line. Given a
telescopic path containing one vertical interval and two horizontal intervals
I, I' at different heights, there exists a stricly shorter telescopic path with the
same endpoints. It is obtained by replacing one of the horizontal intervals, say
I, by another horizontal interval which intersects the same vertical lines as 7,
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and which lies at the same height as I'. Thus the telescopic geodesic g is the
concatenation of at most one non degenerate horizontal interval with at most
two non degenerate vertical intervals. Furthermore, any horizontal interval on
the x-axis minimizes the horizontal distance between the vertical lines passing
through its endpoints. Thus, if py(a)py(b) < O then g is the concatenation
of the horizontal interval I on the x-axis which connects V, and Vj, with
the vertical intervals on 'V, and V), which connect a and b to the endpoints
of 1.

In order to compute the geodesics when py(a)p,(b) > 0, we distinguish
two cases:

CASE A: 0 < py(a) = py(b). Then g is the concatenation of two
vertical intervals of vertical lengths r > 0 with one horizontal interval I.
The horizontal length of I is equal to Xdpy(a)(a, b) if p,(I) > py(a) and
to A 'd, wy(a,b) if py(I) < pya) and py,(I) > 0. Indeed, we recall that
horizontal intervals on the x-axis are dilated both in the future and in the
past. We set (1) = 2t + A”'d, (4(a,b). Let t, be any real number such that
0 <1, <py(b) and f(t,) = mino<,<p ) f(#). From what precedes, g is the
concatenation of two vertical intervals of length #, with a horizontal interval

on the horizontal line Py 1(py(b) —t,). The function f(¢) attains its minimum

In((In Ay @y(@,b) /2 . _ .
nn )1,2&)(61 Ui ). Therefore t, = min(max(t,,0), py(b)) is unique. We

have thus proved that there exists a unique telescopic geodesic between a
and b. Its telescopic length is equal to f(z,).

at ¢, =

We now distinguish three subcases.

Case (0): t, > to. The horizontal distance between a and b is so short
that the horizontal interval between a and b realizes the telescopic distance.
Indeed ?, > t, = t, = 0. The horizontal distance between a and b, which
1s the horizontal length of the horizontal interval I in the above notation, is

smaller than % i
n

Case (1): t, = 1,. The optimal case. The horizontal interval I of g lies on

the horizontal line p,(a) — t,. The horizontal length of I is % The vertical
intervals in g have vertical lengths f, .

Case (2): t, < t,. The horizontal distance between a and b is too large
with respect to the height of the horizontal line through a and b. Then
the horizontal interval 7 of g lies on the x-axis. The horizontal length of

I is equal to A\™»9d, (;y(a,b) > % . It depends on dy,(@(a,b) and can be
arbitrarily large.
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CASE B: 0 < p,(a) # py(b). Without loss of generality we assume that
py(a) < py(b). We consider the point ¢ =V, Npy 1(py(b)). If t, > py(b)—py(a),
the telescopic geodesic from ¢ to b computed in Case A admits a subpath
from a to b. This subpath is the unique telescopic geodesic between a and b.
If z, < py(b) — py(a), then the unique telescopic geodesic between a and b
1s the concatenation of the horizontal interval between a and the vertical
through b, with the vertical segment between this interval and the point b.

The same arguments apply to the case where both a and b lie in the
negative half-plane. This concludes the computations of the geodesics.

STEP 2: GEODESIC TRIANGLES ARE THIN. Let A be any geodesic triangle
in the upper half-plane. Let gi, g», g3 be the sides of A. Let #.(g;) and
t,(g;) be the non negative real numbers for g; defined above. Let [, I, I3,
pyI3) > py(I) > py(I1), be the horizontal geodesics respectively in g, ¢»
and gs.

Case (1): 12.(g1) > 1o(g1). Then 1.(g2) > 1o(92) and £.(g3) = 1o(g3).
Therefore IIilp).([,-) < 1%)\’ i = 1,2,3. The vertical segment of ¢, between I3

and I, is at horizontal distance smaller than % from a vertical segment
in g;. Because of the uniform contraction in A7, this implies that I, is at
In2

vertical distance smaller than 5 from ;. Therefore the union of /; with the
two orbit-segments between its endpoints and the horizontal line p; Hpy())
is at telescopic distance smaller than Ilfll—i + % from I,. All the points of A
not considered up to now belong to at least two distinct sides.

Case (2): t.(g1) < t5(g1). Then py(l;) =0, 1.e. [; lies on the x-axis.

1. If t*(QZ) == ZO(QZ) and t*(g3) - to(g3), then Ililpy(l,-) - ﬁx for i = 2;3
Thus |11}, < 5. We conclude as in Case (1).

2. If both t.(g2) > t.(g2) and £.(g3) > #5(g3) then both I, and I lie on
the x-axis so that I; = I, U I3. Then any point in A belongs to at least two
distinct sides.

3. If only t,(g3) > to(g3) then I, C I;. Let I} C I; be the complement of
L in I;. Then |Ij|, < = . The same inequality is satisfied for the horizontal
distance between the vertical segments connecting the endpoints of I} to I.

This concludes Case (2).

The case where A lies in the negative half-plane is treated in the same
way. The other cases are dealt with using similar, but simpler, arguments than
above. We leave them as an exercise for the reader.
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REMARK 1.1. The above computations fail, and the space is no longer
Gromov-hyperbolic, if one replaces d, = APldy by d, = P(|y|)dy, where P(.)
is a polynomial function of y. Indeed, in this case, the length of the horizontal
interval between the two considered orbits, evaluated at the height where the
minimum of the length-function f(¢) is attained, depends, even in the optimal
case, on the horizontal length of the interval connecting one point to the orbit
of the other. Whereas in the exponential case it equals In‘ZX unless 1t belongs

to the horizontal axis.

2. MAPPING-TELESCOPES AND FOREST-STACKS

Let X be a topological space. Call X a topological tree if there exists a
unique arc between any two points in X. A topological forest is a union of
disjoint topological trees. By ‘arc’ we mean the image of an injective path.
A path in X is a continuous map from a bounded interval of the real line
into X. A forest-map is a continuous map of a topological forest into itself.

~ DEFINITION 2.1. Let ¢: X — X be a forest-map. The mapping-telescope

Ky of (1,X) is the topological space resulting from Kx = | | X x [n,n+ 1]
nez
by the identification of each point (x,n+ 1) € X x [n,n+ 1] with the point

WxX),n+1)eXx[n+1,n+2].

Let us examine somewhat more closely the topology of these mapping-
telescopes.

For any integer n € Z, for any (x,r) € X X [n,n + 1], for any real
number ¢ > 0, we define ,((x,r)) as the point (pFU—CHI=NI+1xy » 4 4y in
X X [E[r + ], E[r +t] + 1], where E[r] denotes the integer part of r. The
map &, is defined on Ky (the disjoint union of the X x [n,n+ 1]) for every
t > 0. Moreover &;,p = 5,0 6.

If a=@,n+1)€Xx[n+1,n+2], then 5a) = W), n+141) e
[n+ 1+ E[t],E[t] +n + 2]. Whereas if g = (x,n+1) € X X [n,n+ 1] then
Gi(a) = W (), n+1+1) € X x [n+1+E[t], E[f] +-n+2], which is equal to
g(b) with b = (p(x),n+1) € X x[n+1,n+2]. Therefore (0t);er+ descends to
the mapping-telescope Ky, where it defines a one parameter family (0y),cp+
of continuous maps of K, . This family depends continuously on the parameter
t € R, It satisfies furthermore oo = Idg » and o4y = 0,004 . Such a family
is called a semi-flow on K.
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Let f: Ky, — R be defined by f(a) = r if a € X x {r}. Then f is a
continuous surjective map. The preimage of any real number r is X x {r},
a topological forest. Furthermore, for any ¢+ > 0, foo; = 7; of, where
7:: R — R is defined by 7(r) = r+¢.

We extracted above the two properties shared by mapping-telescopes which
are really important for our work. We now define a class of spaces which satisfy
these two properties, and in particular generalize the mapping-telescopes.

DEFINITION 2.2. Let X be a topological space. Let (0;);cg+ be a semi-flow
on X. Let f: X — R be a surjective continuous map such that:

1. For any real number r, the stratum f~!(r) is a topological forest.
2. Forany t > 0, foo, = 1,of , where 7;(r) = r—+t for any real number r.
Then X is a forest-stack, denoted by (X,f,d;).

REMARK 2.3. All the strata of a mapping-telescope are homeomorphic.
This 1s not required in the definition of a forest-stack.

As we just saw, a mapping-telescope is an example of a forest-stack. In
Section 13, we show that a Cayley complex for the mapping-torus group of
an injective free group endomorphism is a mapping-telescope of a forest-map,
and thus a forest-stack. The reader can also find there, and in Section 12, an
illustration of the horizontal and vertical metrics on forest-stacks, which we
are now going to define.

3. METRICS

The aim of this section is to introduce a particular metric on forest-stacks,
called the telescopic metric. We sometimes deal with metric spaces which are
not necessarily connected, for instance forests. In this case, when considering
the distance between two points, it will always be tacitly assumed that the
two points lie in a same connected component of the space.

3.1 HORIZONTAL AND VERTICAL METRICS

Let us consider a forest-stack (Xv, f,o0:), see Definition 2.2. We want to
define a natural metric on the orbits of the semi-flow.
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DEFINITION 3.1. The future orbit O (x) of a point x under the semi-flow
is the set of points y such that o,(x) =y for some 7 > 0.

The past orbit O~ (x) of a point x under the semi-flow is the set of points
y such that x is in the future orbit of y.

The orbit O(x) of a point x under the semi-flow is the set of points
y such that there exists a point z which lies in the future orbit of both x
and y.

Let us observe that in general the orbit of a point x strictly contains the
union of the future and past orbits of x.

The orbits of the semi-flow are topological trees. This is a straightforward
consequence of the semi-conjugacy of the semi-flow with the translations in
R via the map f. Let x, y be any two points in a same orbit of the semi-
flow. Assume that x and y lie in a same future orbit of the semi-flow. We
consider the orbit-segment between x and y, where an orbit-segment is a
compact interval contained in the future orbit of some point. The function f
1s a homeomorphism from this orbit-segment onto an interval of the real line.
We define the distance between x and y as the real length of this interval.
Assume now that x and y do not lic in a same future orbit. The future
orbits of x and y meet at some point z such that the concatenation of the
orbit-segment between x and z with the orbit-segment between z and y is
an injective path. We then define the distance between x and y as the sum
of the distances between x and z and z and y. We have thus defined a
distance on the orbits of the semi-flow. This distance is called the vertical
distance.

DEFINITION 3.2. A vertical path in a forest-stack is a path contained in
an orbit of the semi-flow. A vertical geodesic is an injective vertical path.

A horizontal path in a forest-stack is a path contained in a stratum.
A horizontal geodesic is an injective horizontal path.

DEFINITION 3.3. Let ()’(v, f,o:) be a forest-stack. Let H = (m,),cg be a
collection of metrics on the strata of X. Then H is a horizontal metric if
for any r € R, any € > 0, and any x, y in a same connected component
of the stratum f~!(r), there exists x > 0 such that 0 < ¢ < 1 1mplies
Hat(gxy)|r e ,gxy‘rl < €, where g,, is the unique horizontal geodesic between

x and y, and |.|, denotes the horizontal length with respect to m, in the
stratum f~'(r).
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A forest-stack X equipped with a horizontal metric H will be denoted by
(X 7f y Oty 7-[) .

In other words, a horizontal metric on a forest-stack is a collection of
metrics on the strata such that the length of the horizontal paths varies
continuously when homotoping them along the orbits of the semi-flow. The
definition of ‘horizontal metric’ does not imply that the horizontal distance
varies continuously along the orbits. Figure 1 illustrates what might happen
because of the possible non-injectivity of the maps o; |f-1(,) 2 if 04(x) = 0,(y)
for two distinct points x, y in a horizontal geodesic g € f~1(r) then o,(g) is
a horizontal path, but is not necessarily the image of an injective path. Thus
the distance between the endpoints of o,(¢) is not realized by o,(g) but by
a path of smaller length, smaller at least than the length of o0y(gy,), where
Jry C g 1s the subpath of g between x and y.

DEFINITION 3.4. Any horizontal geodesic gy, between two distinct points
x, y such that o,(x) = o,(y) for some t > 0 is a cancellation.

FIGURE 1
(A cancellation)

DEFINITION 3.5. Let p be a horizontal path in the stratum f~!(r) of a
forest-stack (X,f, o).

e The pulled-tight projection (or image) [pl..: of p on the stratum f~'(r+f)
is the unique horizontal geodesic between the endpoints of oy(p) in the
stratum f~(r +1). '

e A geodesic preimage of p under o, is any geodesic p_, with
P—tlfp_p+t =P-
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If S is a path in X, the pulled-tight projection of S on f~'(r),
r > maxees f(x), is the unique horizontal geodesic which connects the images
of the endpoints of S under the semi-flow in the stratum ).

3.2 'TELESCOPIC METRIC

DEFINITION 3.6. A telescopic path in a forest-stack is a path which 1s
the concatenation of non-degenerate horizontal and vertical subpaths.

The vertical length of a telescopic path p is equal to the sum of the
vertical lengths of the maximal vertical subpaths of p.

If the considered forest-stack comes with a horizontal metric H, the
horizontal length of a telescopic path p is the sum of the horizontal lengths
of the maximal horizontal subpaths of p.

The telescopic length |p| E0 of a telescopic path p in X is equal to the
sum of the horizontal and vertical lengths of p.

We will always assume that our paths are equipped with an orientation,
whatever it is, and we will denote by i(p) (resp. #(p)) the initial (resp. terminal)
point of a path p with respect to its orientation.

LEMMA-DEFINITION. Let (X,f, 0y, 1) be a forest-stack equipped with some
horizontal metric H. For any two points x,y in X, we denote by dé(v ,H)(x, y)

the infimum, over all the telescopic paths p in X between x and y, of their
telescopic lengths ‘pl(ﬁ?ﬂi)’ Then (X, d&%)

space. The map d(g e X xX — Rt is a telescopic distance associated to H.

) is a (1,2)-quasi geodesic metric

Proof. 1f d()f;’%)(x, y) = 0 then f(x) = f(y). The distance 1s realized as
the infimum of the telescopic lengths of an infinite sequence (7;),cn Of
telescopic paths. There exists a unique horizontal geodesic between x and
y. Otherwise any telescopic path between x and y has vertical length, and
thus telescopic length, uniformly bounded away from zero. Let ¢ > 0 be
fixed. For some integer i all the telescopic paths 7;,7;y1,... in the above
sequence are contained in a box of height 2e with horizontal boundaries the
pulled-tight projection [glr)+. and all the geodesic preimages of g under o..
The vertical boundaries are the orbit-segments connecting the endpoints of the
above geodesic preimages to the endpoints of [¢]¢(g)4. From the bounded-
dilatation property, the horizontal length of each 7, for n > i is at least
)\:Lzel[g]f(g)-kelf(gHe- Thus for any n > i, |Tn|(§7%) > /\—T-Qel[g]f(g)+€ I_f(g)+e'
Since infneN|Tn|(}7’%) = d(z%)(x,y) = 0, we have {[g]f(g)Jr,Jf(gH_6 = 0.
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That is, oe(x) = oc(y). This holds for any ¢ > 0. Since (oy),cg+ depends
continuously on ¢, we have oy(x) = og(y), whence x = y. We have thus proved
that d& ) does not vanish outside the diagonal of X x X. The conclusion
that this is a distance is now straightforward.

By definition of the telescopic distance, for any x, y in X, for any
€ > O, there exists a telescopic path p between x and y such that
Ip| G < (X % +® ¥)+€. We choose € < min(d & 7 ®¥), 1). We consider the
maximal collection of points xp, . ..,x; in p such that xy = i(p), x, = t(p), and
that the telescopic length of the subpath p; of p between x;_; and x; is equal
to € for i = 1,...,k— 1. The maximality of the collection {xo,x1,...,x}
implies that the telescopic length of the subpath p; of p between x;_; and x;
is at most €. By definition d d ,H)(xl 1,x) < 'le(X 2 for i=1,...,k. Thus

d(z%)(xi_l,xi) <1 foranyi=1,...,k and Zd&w(xi_l,xi) < lp|(3?,’H)' The

choice of € < d(g H)(x, y) then implies that Z d(X %)(xl 1,%) < Zd&%)(x, y).
Therefore xg,xq,...,x is a (1,2)-quasi geodes1c chain between x and y. []

REMARK 3.7. In nice cases, for instance in the case where the forest-stack
1S a proper metric space, the forest-stack is a true geodesic space.

4. MAIN THEOREM

DEFINITION 4.1. Let (X,f,0;,7) be a forest-stack equipped with some

horizontal metric H.

1. The semi-flow is a bounded-cancellation semi-flow (with respect to H) if
there exist A\_ > 1 and K > 0O such that for any real r € R, for any
horizontal geodesic g € f~'(r), for any >0, |[gl4¢|,,, > A'|g|, — K

2. The semi-flow is a bounded-dilatation semi-flow (with respect to H) if
there exists Ay > 1 such that for any real r € R, for any horizontal
geodesic g € f71(r), for any ¢ >0, |[glr4l,o, < Nylgl,.

REMARK 4.2. The reader can observe a dissymetry between the bounded-
cancellation and bounded-dilatation properties, in the sense that the latter does
not allow any additive constant. This i1s really necessary, since several proofs
fail (e.g. those of Propositions 8.1 or 9.1) if an additive constant is allowed
here.
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DEFINITION 4.3. Let (X,f,0:, M) be a forest-stack equipped with some
horizontal metric H.

1. The semi-flow is hyperbolic (with respect to H) if it is a bounded-
dilatation and bounded-cancellation semi-flow with respect to H and there
exist A > 1, o, M > 0 such that, for any horizontal geodesic g € )
with |g| > M, either

o |[91rtniolypnsy, = A™gl, for any integer n > 1, or
e for any integer n > 1, some geodesic preimage g., Of ¢ satisfies
|g_m‘OIr—m‘o Z Anm‘g'r'

2. The semi-flow is strongly hyperbolic (with respect to H) if it is
hyperbolic and also satisfies the following condition:

Any horizontal geodesic g € f~(r) with |g| > M, which admits geodesic
preimages in distinct connected components of the stratum f1(r — ¢ for
arbitrarily small € > 0, admits a preimage g_,;, in each connected component
of the stratum f~!'(r — ntp) such that |g_|,_, > A"|g],.

Let us observe that if the strata are connected, then a hyperbolic semi-flow
is* strongly hyperbolic.

We can now state the main theorem of this paper.

THEOREM 4.4. Let (X f, 01, H) be a connected forest-stack. If (01);cr+ IS
strongly hyperbolic with respect to H then X is a Gromov-hyperbolic metric
space for any telescopic metric associated to H.

At this point, the reader might prefer to read Sections 12 and 13, which
give applications, and so illustrations, of this theorem to the cases of mapping-
telescope spaces and of mapping-torus groups.

REMARK 4.5 (About the necessity of the bounded-cancellation property).
We observe that the Cayley complex of a Baumslag-Solitar group BS(1,m) =
<a, b; b~lab= am> is a forest-stack with a hyperbolic semi-flow. But this is
not a Gromov hyperbolic 2-complex with respect to the telescopic metric. What
happens here is that the semi-flow is hyperbolic but not strongly hyperbolic.

An example of a non Gromov-hyperbolic locally finite forest-stack with
connected strata and a semi-flow satisfying all the desired properties, with the
exception of the bounded-cancellation property (first item of Definition 4.1)
is constructed as follows. We start with the forest-stack R = (R?,f, o, H)
defined in Section 1 and equipped with the associated telescopic metric. We
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consider copies R;, i =0,1,2,... of R. We glue them to R as illustrated
in Figure 2, that is by creating an infinite sequence of pockets of increasing
size.

In

Wi
Jp.!
B 2 /'
JIn

FIGURE 2
(A pocket)

We now attach copies of the negative half-plane of R, along the horizontal
lines with integer y-coordinate of the copies R; of R considered above.
In order to get a forest-stack whose strata are trees, we now identify a
vertical half-line in each of the copies of the negative half-plane, ending at
the horizontal line along which this copy was glued, to the corresponding
vertical half-line in R. In this way, we get a forest-stack whose strata are
trees and whose semi-flow 1s as anounced. This forest-stack is not Gromov-
hyperbolic because in each pocket (see Figure 2) the horizontal interval I,
admits two preimages J!, J> so that there are two telescopic geodesics joining
the endpoints of I,. These are the concatenation of J! and J? with the two
vertical segments joining their endpoints to the endpoints of I;. Since, by
construction, there are pockets of arbitrarily large size, these two telescopic
geodesics can be arbitrarily far from one another, so that the forest-stack is
not Gromov-hyperbolic.

5. PRELIMINARY WORK

We consider a forest-stack (X, f,0s, M) equipped with a horizontal metric
H such that the semi-flow (o;),cr+ 1S strongly hyperbolic. Definition 4.3
introduces three constants of hyperbolicity, denoted by A, fy, M in the
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sequel. The other constants of hyperbolicity, which appear in the bounded-
dilatation and bounded-cancellation properties, are denoted by Ay, A_, K.
Any horizontal geodesic g with horizontal length greater than M satisfies at
least one of the following two properties :

e The pulled-tight image [g]., of g after ntyp, n > 1, is A" times longer
than g. In this case the horizontal geodesic g is dilated in the future, or
more briefly dilated, after t,.

e ¢ admits a geodesic preimage ¢_,;, under o,, which is \" times longer
than ¢. In this case, the horizontal geodesic g is dilated in the past
after 1.

More generally, we will say that g is dilated in the future after ki
(resp. dilated in the past after kty), k > 1, if the same inequalities hold
only for any n > k, after replacing A* by A®™1=9 “and g by [g]r+x—1y
for the dilatation in the future and by ¢_x—iy, for the dilatation in the
past.

When the dilatation occurs in the past, only one geodesic preimage is
required to have horizontal length A\ times the horizontal length of the
horizontal geodesic g considered. Thus it might happen, a priori, that the other
geodesic preimages of g remain short when returning to the past. Lemma 5.1
below shows that the constants of hyperbolicity can be chosen so that such
a situation does not occur. This is a consequence of the bounded-cancellation

property.

LEMMA 5.1. Let (X, fy01,H) be a forest-stack. Assume that (oy),cg+ 1S
(strongly) hyperbolic, with constants of hyperbolicity \, ty, M. Then,

1) There exist ty = jty, for some positive integer j, and M' > M such
that any horizontal geodesic g € f~'(r) dilated in the past after 1, with
lg|, > M, satisfies lg_mé e = 2"|gl, for any geodesic preimage -

0
n>1.

2) The semi-flow (oy),cr+ is (strongly) hyperbolic with constants of
hyperbolicity A, tg, M', X, X, K for any 1y = jty, j > 1 any positive
integer, and any real numbers M’ > M, XN, > Xy, M. > \_, K > K.
Furthermore, if the semi-flow satisfies (1) for some constants fy, M', then it
satisfies (1) for any ty = jt;, where j is any positive integer, and any real
number M" > M'.

Proof. (2) is obvious. Let us check (1). We choose fy > to, ty, = jto
with j an integer, such that o > 2. We consider any horizontal geodesic
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g € f~i(r) with iglr > M. We assume that g is dilated in the past
after #,. Since the semi-flow is strongly hyperbolic, for each » > 1, in
each connected component of f~!(r — nt), there is at least one geodesic
preimage g_,; of g with ,g_m(f) R )\”’5|g|r. We need an estimate
of the horizontal length of the other geodesic preimages of g in this
stratum. Lemma 5.2 below is easily deduced from the bounded-cancellation

property :

LEMMA 5.2. With the assumptions and notation of Lemma 5.1, let
g € f~Y(r) be some horizontal geodesic. If gl, and ¢*,, t > 0, are
two geodesic preimages of g under o; which belong to a same connected

component of their stratum, then “gl {_t ‘ g l < Cso(t) for some

constant Cs(t).

Thus, by Lemma 5.2, for any n > 1, any geodesic preimage G—nt}
> No|g| — Cs, z(nto) For n =1, if |g| > 6;02([0) then

satisfies ]g_mé

rnt

s> 2|gl,. Thus, if |g|, > max(M, %@) then any geodesic preimage
0
> M

t.f s

because |g| > M. By definition of a hyperbolic semi-flow, g—y 18 dllated

either in the future or in the past. This cannot be the case in the future since

f g_t(/)‘r_ » > |gl,. An easy induction on n completes the proof. It suffices to
0

‘9—:‘6
g- has horizontal length greater than 2|g|,. In particular ] gz,

set 7, = (E[max(l, llr‘l‘i)] + Dty and M’ = max(M, L, 2(to)) +1. O

We will assume that the constants of hyperbolicity # and M are
chosen to satisfy the conclusion of Lemma 5.1. Moreover the constants of
hyperbolicity #,, M, Ay, A_, K are chosen large enough that coOmputations
make sense. In the sequel, we say that a path g is C-close to a path ¢
if g and ¢ are C-close with respect to the Hausdorff distance relative
to the specified metric (the telescopic metric if none is specified). The
indices of the constants refer to the lemma or proposition in which they
first appear.

5.1 ABOUT DILATATION IN CANCELLATIONS

Let us recall that a cancellation is a horizontal geodesic whose endpoints
are identified under some o;, t > 0.
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LEMMA 5.3. Let g € f~'(r) be any horizontal geodesic which is dilated
in the future after nty for some integer n > 1. There exists a constant
Css(n) > M, which increases with n, such that if g is contained in a
cancellation, then |g| < Cs3(n).

Proof. Let ¢ be the cancellation containing g. Let ¢ = ¢ U ¢z, with
[c1)y2r = [c2]r4¢ for some ¢ > 0. We assume momentarily that ¢; N ¢y 1s an
endpoint of g. The bounded-cancellation property implies that the horizontal
length of a cancellation ‘killed’ in time % (i.e. a cancellation whose pulled-
tight projection after #, is a point) is a constant C(fp). This constant does not
depend on the horizontal length of g.

Let us consider the pulled-tight image [¢]+s. Let p C [gl-4s be the
maximal subpath outside the pulled-tight image of c¢. This subpath p is the
image of a cancellation killed at time 7. From the observation above and the
bounded-dilatation property, |p|,,, < A C(ty). The same arguments lead to
the upper bound (\7° + AUV L+ N9)C(ty) for the horizontal length of
the subpath of [g], 1., outside [cly4u,. Since g is dilated in the future after
nty, we have |[glrin|,yn, = A°[gl,. From the last two inequalities, if

M 4 AP0 4+ X0 C(t)
Ao — 1 !

then the horizontal length of the subpath g of [gl4n, 10 [cli4n, 18 greater
than |g|,. If |g|, > M, then |q|,,,. > M is dilated in the future after #, since
by convention M satisfies the conclusion of Lemma 5.1. We thus obtain, for
any j > n, the existence of a geodesic with horizontal length greater than |g|,
in [c],+j, . This is impossible.

lgl, >

Let us now consider the case where c¢; M ¢y i1s not an endpoint of g.
After some time ¢ > 0, the situation will be the one described above,
that is a cancellation ¢ = ¢} U, with ¢} N ¢, an endpoint of [g] ;.
The arguments above, together with the bounded-cancellation and bounded-
dilatation properties, lead to the conclusion.  []

We will often encounter situations in which the pulled-tight projection
of a horizontal geodesic p; 1is identified with the pulled-tight projection
of another horizontal geodesic p, in the same stratum. In this case pi, p»
are not necessarily contained in cancellations. But if they lie in the same
connected component of their stratum, both are contained in the union of

two cancellations. Lemma 5.4 below will allow us to deal with similar
situations.
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LEMMA 5.4. Let p be a horizontal geodesic which admits a decomposition
in r subpaths p; such that for some constant L > 0, for any i = 1,...,r,
either |[Dilrtn,|, ity S < |pil, or L > |[pilr+nsl, tnty ;|.. Then there exists
a constant Csa(n,r,L), which is increasing in each variable, such that if p
is dilated in the future after nty, then |p| < Cs4(n,r,L).

Proof. We set n =1 in order to simplify the notation; the general case
is treated in the same way. Up to permuting the indices, |[pily+s|,., > |Pil,

for i=1,...,j. Since p is dilated in the future after %,
JL+ Z pil, > A Z pil, -
i=j+1 i=1
Therefore |p|, < /\,0 .4

5.2 STRAIGHT TELESCOPIC PATHS

DEFINITION 5.5. A straight telescopic path is a telescopic path § such
that if x, y are any two points in § with x € OT(y)UO~(y) then the subpath
of § between x and y is equal to the orbit-segment of the semi-flow between
x and y.

If S is a path containing a point x, let S;; C S be the maximal subpath of §
containing x, whose pulled-tight projection [S J¢e+: on f~1(f(x)+1) is well
defined. The point o;(x) does not necessarily belong to [Sylrx+:. However
there exists a unique point in [Sy/]r+, Which minimizes the horizontal
distance between o,(x) and [Sy ;l¢x+:- This point is denoted by X;. Lemma 5.6
below gives an upper bound, depending on #, for the telescopic distance
between x and X;.

LEMMA 5.6. Let S be any straight telescopic path. If t is any non negative
real number, there exists a constant Cs¢(t) > t, which increases with t, such
that any point x € S is at telescopic distance smaller than Csg(t) from the
point X; (see above).

Proof. If o4x) € [Sxilfe+:,» We set Cse(f) = . Since S is straight, if
o(x) & [Sxlfe+:, x belongs to a cancellation c¢ whose endpoints lie in the
past orbits of X;. The bounded-cancellation property gives an upper bound on
the horizontal length of ¢. This leads to the conclusion.  []
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6. ABOUT STRAIGHT QUASI GEODESICS

DEFINITION 6.1. Let ()Z f,o,H) be a forest-stack. A J,J)-quasi
geodesic, J > 1, J/ > 0, in (X, d&v,ﬂ)) is a telescopic path S of which
each subpath §' satisfies the inequality

18| 50y < Tz 5 (S, KN + T

LEMMA 6.2. Let p be a straight (J,J')-quasi geodesic with
'rmax _f(l(p))l S To 3

where Vg = maxycpf(x). There exists a constant Cso(J,J) > M, which
increases with J and J', such that if |[pl,,..|, 2> Ce2(J,J") then [ply,, is
dilated both in the future and in the past after Cg2(J,J ).

+1p.

Proof. By the bounded-dilatation property, |p|z ,, = AT P

rm ax

We choose n, so that /\fo — JX7"0 > (0. For any n greater than n,, the
inequality
T2t + 2nto + A" |[Pl,. ], )+ < AP

(2] = Dtg4+-2nJtg+-J’
Finax A;fo —J)\— Mo

Ymax + tO

rmax

. This is in contradiction with

p being a (J,J')-quasi geodesic. If |[p],, |, ~ > Ny“M, then, by the
bounded-dilatation property, the geodesic preimages of [p],, . under o, ; have

/
horizontal length at least M. Hence, if moreover |[pl,,.|, Gf ;_1?;04;2;{ “’t:J
- max - — N
+

then the hyperbolicity of the semi-flow implies that they are dilated in the
past after #y. The bounded-dilatation property implies that these geodesic
preimages have horizontal length at least A\L™"|[pl,,.. .. Choosing N, such
that AV > X"+ we conclude that [p],, . is dilated in the past after (N.+1)z.
The same arguments allow us to find a lower bound on |[p],,,. for [p],,..
to be dilated in the future after some fixed finite time. []

is satisfied for |[p],, .

Viax

DEFINITION 6.3. Let (Xv .f,0:) be a forest-stack. A stair in X isa telescopic
path along which the function f is monotone.

LEMMA 6.4. Let p be a straight (J,J')-quasi geodesic stair between two
points a and b, f(a) < f(b). There exists a constant Cg4(J,J") > M, which
increases with J and J', such that if the horizontal length of a horizontal
geodesic I between a and O~ (b) (resp. b and O (a)) is at least Cg4(J,J"),
then I is dilated in the past (resp. in the future) after 1.
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Proof. Let X be such that NoX > X + X% Cs,(J,J'). Assume that the
horizontal length of some horizontal geodesic I between a and O~ (b) is at
least X. By Lemma 6.2, the choice of X implies that if 7 is dilated in the
future after #y, then the first point a; along p satisfying f(a;) = f(a)+1 is at
horizontal distance greater than X from O~ (b). By induction, we thus obtain an
infinite sequence of points aj,as,...,d,,... in p such that f(a;) = f(a;_1)+1
and each a; is at horizontal distance at least X from O~ (b). This is absurd.
The other case of Lemma 6.4 is treated similarly. [

DEFINITION 6.5. Let Sp, S; be two telescopic paths whose pulled-tight
projections agree after some finite time. We say that Sy and S, are in fine
position if, for any two points x, y, x # y, satisfying x € §;NO(), y € Sit1,
i=0,1 mod?2, then x € OT(y) UO™(y).

Let us observe that a path is always in fine position with respect to any
of its pulled-tight projections.

DEFINITION 6.6. A +-hole (resp. —-hole) 1s a telescopic path with both
endpoints in a same stratum, which is in fine position with respect to the
horizontal geodesic I between its endpoints, and which satisfies furthermore

minge, f(x) 2 f(I) (resp. maxye,f(x) < f(D)).

LEMMA 6.7. Let p be a straight (J,J')-quasi geodesic -+ -hole (resp.
—-hole). There exists a constant Cg7(J,J') > M, which increases with J
and J', such that, if I is the horizontal geodesic between the endpoints of
p and if |I|;y > Ce1(J,J"), then I is dilated in the past (resp. future) after
Ce.7(J,J )t

Proof. We consider a decomposition p;p, ... p; of p such that

max f(x) — fA@)| < to,
XCPpi

and a decomposition I;...I; of I, where I; joins the past orbits of the
endpoints of p;. We denote by Ip the union of the I;’s which are dilated in
the past after Cg.2(J,J )to, and by I¢ the union of the other intervals in /. By
Lemma 6.2, the horizontal length of any interval in I is at most Cgo(J,J").

Let n be some positive integer. We consider a horizontal geodesic -z with
I = [A¢ny+ncs 7,07y, and assume that % is dilated in the future after #. Then,

N p sy + A" elrgy < hlpay < A7 Uplsgy + Helsg)) -
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AII_)\—N X(n) . .
Hence |1c|f(1) ¥ oew ID{f(I), so that IIC[f(I) > 1+X(n)lllf(1) with X(n) =
:\\,, :\\ —. Now lim, o0 li(g’g()n) — 1, so that for some n, > 1, for any
n>n,, 2@ > 1 GQince the horizontal length of any interval [ in Ic

+X(m) <= 2°
is at most Cg2(J,J"), and the telescopic length of the associated py C p 1s at

least 7y, we obtain
Io

lpl(i%) =z 2C.2(J,J") |I\f(l)'

On the other hand, < 2Jntg+ A"z, +J" for any n > n.. The last
two inequalities give, for n > n., 2Jnty + A~"J ey ¥ 2 seom iy
equwalently 2nty +J > (-2C—(J—J,—) — A"y . We choose no = n, such

that m A" > 0. We get

2Jl’lot0 -+ J! I
_ A—noJ - , If(I)

2Cs. 2(.] J")

2Jnoto+J’
Thus, fOl‘ |I|f(1) > [ __)\‘”O] o

2Cg 2, J7)
[|;q) > N M, then |h|;,, > M. Therefore h is dilated in the past after 7. We
choose N such that ANAT" > A. Thus, if |1],, > max(\y M, 2ngitl

_’O—. _— —nhgp
2Cg oW,ID) ATt J

then I is dilated in the past after (1n,Cs2(J,J") + N)ty. The arguments and
computations in the case where max,c,f(x) < f(I) are the same. L]

h is not dilated in the future after 7. If

7.  SUBSTITUTION OF QUASI GEODESICS

LEMMA 7.1. Let p be a (J,J")-quasi geodesic. Let q be obtained from
p by replacing subpaths p; C p by (L,L')-quasi geodesics q; satisfying the
following properties :

e g; has the same endpoints as p;,

e g; is L-close to p;,

4l 5y < Llpil g,

There exists a constant C;(L,L',J,J"), which increases in each variable,
such that q is a (C71(L,L',J,J"), C; (L, L', J,J"))-quasi geodesic which is
L-close to p.

Proof. Since each g; is L-close to a p;, and with the same endpoints,
q is L-close to p. Let us consider any two points x, y in ¢ and let g, C g
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be the subpath of g between x and y. If both x and y lie in a ¢;, or
in a same subpath in the closed complement of the union of the ¢;’s, then
quy|()7,?{) < max(L, J)d(X 206 Y) + max(L',J'). Otherwise ¢y, = wjwws3,
where w;, ws are contained either in some ¢; or in p, and w, begins and ends
with the initial or terminal point of some ¢;. The third property concerning the
g;’s leads to |w;| G = L|p> where p, C p is the subpath of p with the

same endpoints as w,. Thus |g < LJdz_ (x,y)+2max(L',LJ). [
wlX ) = eE Y

‘(X H)’

LEMMA 7.2. Let p be a straight (J,J')-quasi geodesic —-hole such that
maxe, f(I)—f(x) < L, where I is the horizontal geodesic joining the endpoints
of p. Then there exists a constant Cy,(L,J,J") > M, which increases in each
variable, such that

D Uy < G2, 9P g 4y

2) I is a straight (C7,(L,J,J"), C7o(L,J,J"))-quasi geodesic which is
Cyo(L,J,J")-close to p.

Proof. A horizontal geodesic is always straight. The horizontal geodesic
I 1s the pulled-tight projection of p. Thus, by the bounded-dilatation property,
]y < N 11l 4, By Lemma 5.6, I is Csg(L)-close to p. Consider any
subpath I’ of I; it is the pulled-tight projection of some subpath p/ of p. By
the bounded-dilatation property, |I'|;, < M p 1()7,%). Since p is a (J,J")-quasi
geodesic, |I'|;;) < AL = H)(z(p’), t(p'))+J"). Since I' is Cs.¢(L)-close to p’,

gy < Nidd gy, GUD, 1T) + N (2ICs6(L) + ). O

LEMMA 7.3. Let p be a straight (J,J')-quasi geodesic —-hole such that
the horizontal length of the horizontal geodesic I between its endpoints is less
than or equal to L. Then there exists a constant C;5(L,J,J") > M, which
increases in each variable, such that

1) |I|f([) S C7.3(L7J7J/)|p‘(z%)'

2) I is a straight (C75(L,J,J"), C73(L,J,J"))-quasi geodesic which is
Cy5(L,J,J")-close to p.

Proof. Since p is a (J,J')-quasi geodesic,

—f(D| < JI J .
r?eeg(lf(X) fD] < ||f(1)+

Lemma 7.3 now follows from Lemma 7.2. L]

ETER
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LEMMA 7.4. Let p be a straight (J,J')-quasi geodesic stair. For any
L > 0, there exists a constant Cy.4(L,J,J"), which increases in each variable,
such that if q is a straight stair whose points are at horizontal distance at
most L from p, and with the same endpoints as p, then

1) g is a straight (C7.4(L,J,J"), C7.4(L,J,J"))-quasi geodesic stair which
is L-close to p.

2) S C7.4(L7J7 ‘]’

|Q|(§{’q{) )lpl(f’fH)'

Proof. Consider a stair S, in the disc bounded by pUg, whose endpoints
are those of p and ¢, and whose vertical geodesics end at ¢, all the stairs
being oriented so that f is increasing along them. Consider a subpath §' of
S which is the concatenation of a vertical segment followed by a horizontal
one. By assumption, the horizontal length X of § is bounded above by L.
Let ¢ be its vertical length. The bounded-dilatation property implies that the
quotient of |$| &) by the telescopic length of the subpath of p between

the endpoints of §’ is bounded above by QO = ﬁx,—x Since X < L, QO
tends to 1 as t — 4oco0. One thus obtains a coanrtant T such that for
t > T, Q is bounded above by some constant, depending on L. When
both # and X are close to O then Q 1is close to 1. Hence, since QO 1is
continuous, @ admits an upper bound, denoted by A(L), for all the ¢ and
X considered. This upper bound will be the same for all the subpaths S as
above.

The stair S is a concatenation of such subpaths §’, possibly with one or
two subpaths of p at the extremities. Thus the additivity of the telescopic
length gives |S1()Z%) < A(L)1p|&w. Let S” be a subpath of S which is
the concatenation of a horizontal subpath followed by a vertical one. The
path S is the concatenation of such subpaths S’ with possibly one or two
subpaths of g at the extremities. Exactly the same arguments as above give
1915 2y < AWDIS| 5 5~ We thus get |g| 5, < ALY |p| &30 1t only remains
to prove that g is a quasi geodesic with constants of quasi geodesicity
depending only on L,J,J'. Let x,y be any two points in g. As usual
gxy 1is the subpath of ¢ between x and y and we denote by p,, the
subpath of p between the two points X',y in p which are at horizontal
distance at most L from x and y. We consider a stair S between Gxy
and p,, , with the same endpoints as g,,. The same arguments as above
apply and give quy|<§’%) & A(L)zlpx/yxl(zm. Since p is a (J,J")-quasi
geodesic, we conclude that |g,y| G S JALYd ~ . (x',y") + J'A(L)*. Since

X, H)
dz %)(xl V) < d5 4% Y) + 2L, the proof of Lemma 7.4 is complete.  []
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8. APPROXIMATION OF STRAIGHT QUASI GEODESICS IN FINE POSITION

PROPOSITION 8.1. Let h be a horizontal geodesic. Let g be a straight
(J,J')-quasi geodesic, between the orbits of the endpoints of h. There exists
a constant Cg1(|h|,,J,J") such that, if g is in fine position with respect to
h, then g is Cs1(|hl,,J,J')-close to the orbit-segments between its endpoints
and those of h. Moreover Cgi(L,J,J") < Cs1(M,J,J") if 0 < L <M, and
Cs.1(L,J,J") > Co (L', J,J)) if L>IL > M.

Proof. We consider any maximal (in the sense of inclusion) +-hole b
in g, with min,¢, f(x) > f(h) + Cs.7(J,J)ty. By Lemma 6.7, the horizontal
geodesic I between its endpoints is dilated in the past after Cgs7(J,J )t
if |I ]f(l) > Ce7(J,J'). Since g and h are in fine position, this implies that
|I|f(1) < max(|h|,, Cs7(J,J)). If f(h) < fU) < f(W)+Cs.7(J, I )ty, the bounded-

dilatation property gives |/ ) < )\ffju’f)tolh‘r.

With the same notation, assume now that » is a maximal —-hole with
Ja) < f(h) — Cs7(J,J)ty. The pulled-tight image of I in the stratum of
h is not necessarily contained in k. However, if it is not, then we can
write [ = I1 I3 such that I; and I; are contained in cancellations, and
the pulled-tight image of L, in the stratum of 4 is contained in k. This
follows from the fact that 4 and g are in fine position. If |7 |f(]) > Ceq7(J,J)
then, by Lemma 6.7, I is dilated in the future after Cs7(J,J)fp. On the
other hand, I[Ig]f(h)|f(h) < |h|., and either |I,~|f(1) < Cs53((Ce7(J,J") + Dy
or I[Ii]f(l)—l—CsJ(J,J')fo If(I)—I—Csj(J,J’)to < l]i|f(1) for i = 1 or i = 3. Indeed
| Uilrt-on ol s coram > Hilsay > C5.3((Cs7(1, ") + Dig) contradicts
Lemma 5.3 since the left inequality implies that [£]sq)+c, ..y, is dilated in
the future after 7y, thus J; would be dilated in the future after (Cs7(J,J")+1)1,.
By Lemma 5.4 we get: If [IIf(I) > Ce.7(J,J"), then

gy < Cs5.4(Co7(J, "), 3, max(|hl,, Cs 3((Co.7(J,J") + Dip))).
It remains to consider the case where f(h) > f(I) > f(h) — Cs.7(J,J)ty. The
bounded-cancellation property gives an upper bound for |/ |f(,).

We have thus proved that, for any maximal +-hole b in ¢ which lies
above h, or any maximal —-hole » in g which lies below 4, the horizontal

distance between the endpoints of b is bounded above by some constant
A(|h|,,J,J'). Lemmas 7.3 and 7.1 then provide a constant

B(,h|r7-]7 J/) = C7.1(C7.3((A(|h|r7‘]7 J/)a‘]a J/)a C7.3((A(|h‘r>~]9 J/>7J7J/)7J7J/)

such that after replacing maximal —-holes in g by the horizontal geodesics
between their endpoints, we get a straight (B(|A|,,J,J"), B(|h|,,J,J"))-quasi
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geodesic, with the same endpoints, in fine position with respect to /, which
is C73(A(|h],,J,J"),J,J")-close to g and which is a stair or the concatenation
of two stairs. Lemma 6.4, together with Lemma 5.4 applied as above, then
provide Cg4(B(|h|,,J,J"),B(|h|,,J,J")) and

D(‘hlry']a J/) — C5.4(17 37 C6.4(B(|hir>']7 J/)aB(ih‘r7J7 J/))

such that this, or these, stair(s) are D(|h| ,J,J")-close to the orbit-segments
between 4 and their endpoints. We conclude that g is Cr3(A(|h|,,J,J"),J,J)+
D(|h|,,J,J")-close to these orbit-segments. The last point of the proposition
is obvious.  []

9. PUTTING PATHS IN FINE POSITION

PROPOSITION 9.1. Let h be a horizontal geodesic. Let g be a straight
(J,J")-quasi geodesic, which joins the future or past orbits of the endpoints
of h. There exist a constant Cy1(J,J") and a (Co1(J,J"), Cy1(J,J"))-quasi
geodesic G which is Co1(J,J")-close to g, which has the same endpoints as
g, and which is in fine position with respect to h.

Proof. We consider a maximal subpath ¢ of g whose endpoints lie in
the future or past orbits of some points in &, and such that no other point
of ¢’ satisfies this property. Consider any maximal —-hole » in ¢, and let
I denote the horizontal geodesic between the endpoints of b.

CASE 1. Either I is contained in a cancellation or / is the concatenation
of two horizontal geodesics, each contained in a cancellation.

Lemma 6.7 gives Cg7(J,J) such that, if |I}f(1) > Ceq7(J,J) then I is
dilated in the future after Cq7(J,J")ty. Lemma 5.3 gives Cs3(Cs.7(J,J")) such
that the horizontal length of any horizontal geodesic contained in a cancellation
and dilated in the future after Cs7(J,J)tp is at most Cs3(Ce7(J,J")). By
Lemma 5.4 we get an upper bound Cs 4(Cs.7(J,J"),2, Cs5.3(Cs.7(J,J"))) on the
horizontal length of 1.

CASE 2. There exists another horizontal geodesic in another connected
component of the same stratum whose pulled-tight projection agrees with that
of I after some finite time.

We consider the maximal geodesic preimage I’ of I under TCo.1(J,7)to

which connects two points of b. It admits a decomposition into subpaths 7,
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connecting points in » such that the subpath of b between the endpoints
of each I, is a —-hole. The strong hyperbolicity of the semi-flow implies,
by Lemma 6.7, that the horizontal length of each I, is bounded above by
Ces.7(J,J"). Since ¢ is a (J,J")-quasi geodesic, we get max,ep(f(I) —f(x)) <
JCs7(J, I+ T + Cs7(J,J).

CASE 3. Some subpath of I connects the future or past orbits of points
in h. ‘ .

The only possibility is that / be a pulled-tight 1mage of h,ie. ¢ =0b.
Consider a geodesic preimage I’ of I under oc, ../, between two points in
b. Then proceed as in Case 2, the only difference being that for each subpath
I, either there exists a horizontal geodesic in another connected component
of the same stratum, whose pulled-tight projection agrees with that of I, after
some finite time (this is exactly Case 2), or I, is contained in a cancellation
or in the union of two cancellations, and the arguments are exactly those of
Case 1. The bounded-dilatation property then gives an upper bound on the
horizontal length of 7.

We denote by A(J,J’) the largest of the constants found in Cases 1, 2 and 3.
We denote by A’(J,J) the largest of the constants A(J,J"), C73(A(J,J"),J,J")
and C;,(A(J,J"),J,J). Lemmas 7.2, 7.3 and 7.1 then give B(J,J') =
Ci1(A'(J,J),A'(J,J"), J,J"), such that replacing the maximal —-holes in
g’ by the horizontal geodesic between their endpoints yields a straight
(B(J,J"),B(J,J"))-quasi geodesic stair S, with the same endpoints, which is
A'(J,J")-close to ¢'. Let I’ be a horizontal geodesic between S and a future
or past orbit of some point in %, which is minimal in the sense of inclusion,
i.e. does not contain any subpath connecting S to a future or past orbit of a
point in /4. This horizontal geodesic I’ is a pulled-tight image of a subpath
of S in the stratum considered. It is either contained in a cancellation, or is
the union of two horizontal geodesics contained in a cancellation. Lemma 6.4
gives Cg4(B(J,J"),B(J,J")) such that, if |I’ |f(1,) > C¢.4(B(J,J"),B(J,J")) then
I’ is dilated in the futur after #. From Lemmas 5.3 and 5.4 we get |[I'|;;y <
Cs.4(1,2,Cs3(1)). Therefore S is at horizontal distance at most D(J,J') =
max(Cs.4(B(J,J"), B(J,J")), Cs.4(1,2,Cs3(1))) from a straight stair S(¢g'), with
the same endpoints and in fine position with respect to 4. Lemmas 7.4 and 7.1
then give E(J,J") = C7.1(C7.4(DWJ,J"),B(J,J"),B(J,J")), C;.4(D{J,J"), B(J,J"),
B(J,J"),J,J") such that replacing the maximal subpaths ¢’ as above by
the given stair S(g’) gives a straight (E(J,J'), E(J, J'))-quasi geodesic, with
the same endpoints as ¢, in fine position with respect to A, and which is
D(J,J)-close to g. [
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10. STRAIGHT QUASI GEODESIC BIGONS ARE THIN

PROPOSITION 10.1. There exists a constant Bi(J,J') such that any straight
(J,J")-quasi geodesic bigon is Bi(J,J')-thin.

Proof We denote by g¢,g the two sides of a (J,J')-quasi geodesic
bigon. We assume for a while that some horizontal geodesic connects the
past orbits of the endpoints of the bigon. We choose such a horizontal
geodesic h satisfying f(h) < mingegug f(x) — Co.1(J, J'). Proposition 9.1 gives
a (Cy1(J,J"),Co1(J,J"))-quasi geodesic bigon, with the same vertices, which
is Co 1(J,J")-close to gU g . We denote the sides of this bigon by G and G'.

Let us call a diagonal a horizontal geodesic which minimizes the horizontal
distance between the future and past orbits of its endpoints. From the
hyperbolicity of the semi-flow, any diagonal with horizontal length at least M
is dilated both in the future and in the past after 21.

We choose a real number Ly > C5,4(2,3,)\%£° Cs53(2)) > M (the meaning
of the constant Cs4(2, 3, /\ifo Cs3(2)) will become clear later). Let P € G. We
assume that there exist two points P;, P, € h, whose future orbits intersect
G, such that P is at telescopic distance L, > Cg.1(Lgy, Co.1(J,J"), Co.1(J,J"))
from Ot (PHUO(Py), i=1,2.

We consider a diagonal D between OF(P)UO~(P;) and OF(P)UO™(P2).
This diagonal is in fine position with respect to h. Since G is in fine
position with respect to &2, and D connects the future or past orbits of
points in h, and the future or past orbits of points in G, then G is
in fine position with respect to D. Since the point P 1s at telescopic
distance Ly > Cg_](L(), C9_1(J, ]/), C9.1(J, J,)) from 0+(P1)U0—(P1) and from
O™ (P,) U O (P,), Proposition 8.1 implies that |D]f(D) > L.

Since G is in fine position with respect to D, and connects the union of
the future and past orbits of the endpoints of D, some horizontal geodesics
connect P € G to OT(Py) and to O"(P,). Either these horizontal geodesics
are contained in the pulled-tight image of D, or some pulled-tight image
of their concatenation contains D. Because of the bounded-cancellation and
bounded-dilatation properties, the telescopic distance between a point and an
orbit tends to infinity with the horizontal distance between this point and
that orbit. Since the telescopic distance between P and OT(Py) U O~ (P)),
and between P and OT(P,)U O~ (P,) is L, this simple observation gives
an upper bound X, depending on L;, for the horizontal length of each of
these horizontal geodesics. Therefore some horizontal geodesic connecting
Ot (P)H)UO™(Py) to O (P,)UO~(P,) has horizontal length at most equal to
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some constant 2X (depending on L;). In particular, D|f(D) < 2X.

We observed that a diagonal D with |D|,, > M is dilated both in
the future and in the past after 2f. Here |D|f(D) > Lo > M. Since the
concatenation of the above two horizontal geodesics, which lie in the future
or in the past of D, has horizontal length at most 2X, a straightforward
computation gives Y > 0, still depending on L;, such that |[f(P) —f(D)| < Y.
Lemma 5.6 then implies that P is at telescopic distance smaller than Cs¢(Y)
from some point in D.

Since G’ and D are in fine position, if no point of G’ lies in the future
or past orbit of an endpoint of D, this endpoint belongs to a cancellation.
Thus we can write D = D;D,D5, where

e Dy (resp. D3) is non trivial if and only if no point of G’ lies in the future
or past orbit of the initial (resp. terminal) point of D.

e D; and D3, if non trivial, are contained in cancellations.

e G’ connects the future or past orbits of the endpoints of D,.

Let us assume that D; and Ds; are both trivial. Then, since 2X >
ID|spy = Lo, Proposition 8.1 tells us that some subpath of &' is
Cs.12X, Co 1 (J,J), Co1(J,J))-close to the orbit-segments which connect
its endpoints to the endpoints of D. We observed that D 1is dilated
both in the future and in the past after 2f. We proved that 2X >
|D|;py = Lo. An easy computation gives a time #. after which the pulled-
tight images and the geodesic preimages of D have horizontal length at
least 3Cg 12X, Co1(J,J"),Co1(J,J)). Thus some point Q of the above
subpath of G’ satisfies [f(Q)—f(D)| < t.. Lemma 5.6 gives Cs¢(t:)
such that Q is Csg(t,)-close to D. Therefore P € G and Q € G’ are
Cs¢(t.) + C5.6(Y) + X -close.

Consider now D = D; D, D3 with D; or D3 non trivial. Since )D]f(D) >
C5_4(2,3,)\3f°C5_3(2)), and D is dilated in the future after 2%, Lemmas 5.3
and 5.4, together with the bounded-dilatation property, give |Ds] oy 2

A;zto)\ifoCig@) > M. Also obviously |D; |f(D) < 2X. As in the case where
D; and D5 are trivial, on replacing D by D, in the above arguments,
Proposition 8.1 and Lemma 5.6 eventually give a constant Cs(#,) such that
some point Q € G’ is Csg(to)-close to D,. Thus P € G and Q € G’ are
Cs.6(to) + Cs.6(Y) + X -close.

Consider now the case in which the points Py, P, do not exist. Then P is
L -close to some point P’ in the orbit of an endpoint, say a, of the bigon. By
arguing as above (putting paths in fine position and applying Proposition 8.1),
we find a horizontal geodesic /', with one endpoint in the future or past orbit
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of a, such that both paths G and G’ have one point A-close to /', for some
constant A. Since G and G’ both end or begin at the point a, this implies
that G’ admits a point B-close to each point of the orbit-segment between a
and A’. In particular there exists Q € G’ which is B+ L;-close to P € G.

It remains to consider the case where no horizontal geodesic connects the
past orbits of the endpoints of the considered (J,J)-quasi geodesic bigon.
Then, in the future orbit of the initial endpoint there exists a point z whose
past orbit can be connected to the past orbit of the terminal endpoint, and
this property is not satisfied by the point w with f(z) — f(w) = %, which
1s either in the future or past orbit of the initial endpoint. The strong
hyperbolicity of the semi-flow and Proposition 8.1 then give a constant
Cs.1(M,J,J') such that initial subpaths of both sides of the bigon are
Cs.1(M,J,J) + ty-close to the orbit-segment connecting the initial endpoint
of the bigon to z. From what precedes, any (R,R’)-quasi geodesic bigon
between z and the terminal endpoint of the considered bigon is X(R, R)-thin,
for some constant X(R,R’). This easily implies that the given bigon is
2(Cg.1 (M, J, J + o) + X(R,R' + Cs.1(M,J, J + Ip) -thin. []

11. GEODESIC TRIANGLES ARE THIN

The following lemma was suggested to the author by I. Kapovich, and
allows us to simplify the conclusion. Let us recall that, in the context of quasi
geodesic metric spaces, an (r’,s’)-chain bigon is a bigon whose sides are
(r',s")-chains. Still with this terminology, an (r, s)-chain triangle is a triangle
whose sides are (r,s)-chains.

LEMMA 11.1. Let X be an (r,s)-quasi geodesic metric space. If
(r',s')-chain bigons are 5(r',s')-thin, ¥ > r, s' > s, then X is 25(r, 35) -hyper-
bolic.

Proof.  We consider an (r,s)-chain triangle with vertices a, b, ¢ and sides
[ab], [ac] and [bc]. We consider a point x in the (r,s)-chain [ab] which is
closest to c. We claim that [cx] U [xb] is an (r,3s)-chain, where [cx] and
[xb] denote (r,s)-chains from ¢ to x and from x to b. Indeed, for any
points u,v in [xb] or [cx], one obviously has rdy(u,v) > [[uv]]y. Let us
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thus assume that u € [cx] and v € [xb]. Since x is a point in [ab] closest
to ¢, x is a point in [ab] closest to u. Thus |[ux]|y < |[uv]|,. Moreover
< |[xul|y +|[uv]|y . Therefore |[ux]|y+|[xv]|y < 3|[uv]|y. Whence the
claim. The given (r, s)-chain triangle can be decomposed into two (r, 3s)-chain
bigons. Therefore this triangle is 26(r, 3s)-thin.  []

LEMMA 11.2. Let (X,f,0,,H) be a forest stack. There exists a con-
stant Ci1,(r,s) such that any (r,s)-chain in (X ) is contained in a

A H)
(Cr1.2(7, 5), C11.2(r, 5)) -quasi geodesic.
Proof. Any pair of consecutive points x;_1,x;, i = 1,...,k, in an
(r,s)-chain ¢ = xg,...,x; can be connected by a telescopic path p; which

is the concatenation of exactly one vertical and one horizontal geodesic. The
vertical length of the vertical geodesic is bounded above by d()}v %)(xi_l ,X;). By
the bounded-dilatation property, the horizontal length of the horizontal geodesic

d~  (xi—1,%)

is bounded above by A ™" d& ,H)(xi_l,xi). If p is the concatenation of

the p;’s then p is a telescopic path containing the chain ¢, whose telescopic
length satisfies

(l 15X, z)
Pl < Z(l + A @ )5z 4y (Kim1, %)

Since we consider (7, s)—chains we have d(x H)(xl- 1,x) < r. Thus

Pl < A+ X )Zd(xm(xl 1,%). By definition of an (r,s)-chain

k

Zd(X 2 (im1, %) < sd g (X0, %) Thus |p|(X o < S(L+Npd g, (o, X))
Any subpath p’ of p decomposes as a concatenation gp;p;i1..:pmq Where
g, q are proper subpaths respectively of p;_; and p;. The same argu-
ments as above prove that |ppiy1...Pm| 5 Fay = < s(1 4+ N )d(x H)(z(pi),t(pm)).

Furthermore |ql(f,7%) <A+ XN)r and |¢ |(X b < A+ X

This implies that |[p/| Gy S \piDit1 - - me(X w t2r(l + X)) and
(X %90 @), (o) < d (X ,H)(z(p’ ), 1(p")) + 2r. We conclude that

P90y < SCL+ N g 5 GO0, 1@0) + 271+ $)(1+ X,)

Setting Ci1.2(r,s) = max(s,2r(1 + $))(1 + X, ), we get Lemma 11.2. ]
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LEMMA 11.3. There exists a constant Cy1.3(J,J") such that any (J,J')-quasi
geodesic G is Ci13(J,J")-close to a straight (Cy13(J,J"), C11.3(J,J")-quasi
geodesic.

Proof. Let us call bad subpath of G any ‘maximal’ subpath p of G whose
endpoints lie in a same orbit-segment of the semi-flow, where ‘maximal’ means
that, if po (resp. pi) are arbitrarily small, non trivial subpaths preceding (resp.
following) p in G, then the endpoints of py and p; do not lie in a same
orbit-segment. We consider a bad subpath p. It might happen that p contains
other bad subpaths p,. In this case, we choose one of them, denoted by g,
and we replace all the other bad subpaths in p by the orbit-segment between
their endpoints. Since orbit-segments are telescopic geodesics, the resulting
path, denoted by p’, is a (J,J')-quasi geodesic. Since p’ does not contain any
bad subpath other than ¢, there exists a point a € ¢ C p/ such that p’ is the
concatenation of two straight (J,J')-quasi geodesics gg, g1, where go goes
from its initial point i(p’) to a, and g; goes from a to its terminal point #(p’).
We now consider the (J,J')-quasi geodesic triangle of vertices i(p)), t(p)), a,
and with sides gg, g; and the orbit-segment O between i(p’) and #(p’). We
consider any point z € g; which minimizes the telescopic distance between
i(p’) and g;. We choose a telescopic geodesic g, between i(p’) and g; .

We denote by u (resp. v) the path from i(p/) to a (resp. #(p’)) which is the
concatenation of g, with the subpath of g; between z and a (resp. #(p’)). As in
the proof of Lemma 11.1, we prove that the bigon of vertices i(¢/) and a, with
sides go and u, and the bigon of vertices i(p’) and #(p’) with sides v and O
are straight (3/,3J’)-quasi geodesic bigons. By Proposition 10.1, these bigons
are Bi(3J,3J')-thin. Thus there exist two points x € gy and y € g; which are
2Bi(3J,3J")-close, and such that the subpaths of gy (resp. of g;) between i(p)
and x (resp. between #(p’) and y) are 2Bi(3J,3J)-close to O. Since p’ is a
(J,J")-quasi geodesic, we conclude that p’ is (2J +2)Bi(3J,3J") +J' -close to
0. The same conclusion holds if one considers any bad subpath other than g
in p. Thus any point in p is (2J + 2)Bi(3J,3J") + J' -close to O. Since the
choice of the bad subpath p is arbitrary, the proof is complete.  []

Proof of Theorem 4.4. Let (X,f,0,,H) be a forest-stack equipped with
some horizontal metric H such that (o;),cg+ is strongly hyperbolic with
respect to H. By the Lemma-Definition of Section 3.2, this forest-stack is
a (1,2)-quasi geodesic metric space. Let us consider any (r, s)-chain bigon,
r>1,s>72.ByLemma 11.2, it is contained in a (Cy12(7, s), C11.2(r, 5)) -quasi
geodesic bigon. By Lemma 11.3, this bigon is A(r,s)-close, with A(r,s) =
Ci13(Cr1.2(r,8), Ci1.2(r, 5)), to a straight (A(r, 5), A(r, s)) -quasi geodesic bigon.
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Proposition 10.1 provides a x(r,s) = Bi(A(r, s),A(r,s)) such that this bigon
is r(r,s)-thin. Thus the given (r,s)-chain bigon is §(r, s)-thin, with &(r,s) =
k(r,$)+2A(r,s). By Lemma 11.1, the given forest-stack, which is a (1, 2)-quasi
geodesic metric space, is 26(1, 6)-hyperbolic. [

12. BACK TO MAPPING-TELESCOPES

In this section we elucidate the relationships between forest-stacks and
mapping-telescopes.

12.1 STATEMENT OF THE THEOREM

An R-tree (see [9], [2] among many others) is a metric space such that
any two points are joined by a unique arc and this arc is a geodesic for the
metric. In particular an R-tree is a topological tree. An R-forest is a union
of disjoint R-trees.

LEMMA 12.1. Let (I',dr) be an R-forest and let 1): I" — I be a forest-
map of I'. Let (Ky,f,0,) be the mapping-telescope of (1,1 equipped with
a structure of forest-stack as defined in Section 2. Then there is a horizontal
metric H = (m,),cgp on Ky such that
1. The R-forests (f~'(r),m,) and (f~'(r + 1),m,4+1) are isometric. Each

stratum (f~'(n),m,), n € Z, is isometric to (I, dr).

2. For any real r and any horizontal geodesic g € f~(r), the map

. +1—r] = R"
A t *"'>|0't(9)|r+t

Is monotone.

Such a horizontal metric is called a horizontal dr-metric. The telescopic
metric associated to a horizontal dr-metric is called a mapping-telescope
dr -metric.

Proof. We make each I" x {n}, n € Z, an R-forest isometric to I". We
consider a cover of I' by geodesics of length 1 which intersect only at their
endpoints. Each I" x {n} inherits the same cover. There is a disc D, , in Ky
for each such horizontal geodesic e in I' x {n}. This disc is bounded by e,
Y(e) and the orbit-segments between the endpoints of e and those of (e).
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We foliate this disc by segments with endpoints in, and transverse to, the
orbit-segments in its boundary. Then we assign a length to each such segment
so that the collection of lengths varies continuously and monotonically, from
the length of e to that of 1)(e). We thus obtain a horizontal metric on the
mapping-telescope. Furthermore each stratum f~'(n), n € Z, is isometric
to (I',dr). And the maps denoted by /., in Lemma 12.1 are monotone by
construction. By definition of a mapping-telescope, the discs D, , between
I'x{n} and I"x {n+ 1} are copies of the discs D, , between I' x {n’'} and
I' x {n" + 1}, for any n, n’ in Z. This allows us to choose the horizontal
metric to satisfy the further condition that (f~'(r),m,) be isometric with
(f~Y(r +1),m,y,) for any real number r. []

We now define dynamical properties for R-forest maps.

DEFINITION 12.2. Let (I',dr) be an R-forest. A forest-map 1 of
(I',dr) 1is weakly bi-Lipschitz if there exist 4 > 1 and K > 0 such that

,LLd]"(X, y) 2 dFW(X)a be(y)) 2 -};dr(xy y) — K.

DEFINITION 12.3. Let (I',dr) be an R-forest. A forest-map 1 of (I, dr)
is hyperbolic if it is weakly bi-Lipschitz and there exist A\ > 1, N > 1,
M > 0 such that for any pair of points x, y in I with dr(x,y) > M, either
dr(p" (), ¥ (1)) > Mr(x,y) or dr(xy,yn) > Adr(x,y) for some xy, yy with
PN o) = x, PNw) = y.

A hyperbolic forest-map ¢ of (T',dr) is strongly hyperbolic if, for any pair
of points x, y with dpr(x,y) > M and each connected component containing
both a preimage of x and a preimage of y under 9", there is at least one
pair of such preimages xy, yy for which dr(xy,yy) > Adr(x,y).

If the forest I is a tree then a hyperbolic forest-map is strongly hyperbolic
(similarly we saw that a hyperbolic semi-flow on a forest-stack whose strata
are connected 1is strongly hyperbolic).

Our theorem about mapping-telescopes is

THEOREM 12.4. Let (I',dr) be an R-forest. Let Y be a strongly
hyperbolic forest-map of (I',dr) whose mapping-telescope Ky, is connected.

Then Ky is a Gromov-hyperbolic metric space Jor any mapping-telescope
dr -metric.
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12.2 PROOF OF THEOREM 12.4

LEMMA 12.5. Let (I',dr) be an R-forest. Let ) be a weakly bi-Lipschitz
forest-map of (I',dr). Let (Ky,f,o0:) be the mapping-telescope of (,I),
equipped with a structure of forest-stack as defined in Section 2. Then the
semi-flow (0;),cr+ 1S a bounded-cancellation and bounded-dilatation semi-flow
with respect to any horizontal dr-metric (see Lemma 12.1).

Proof. The horizontal metric ‘H agrees with the metric dr on all the strata
f~Y(n), n € Z (see Lemma 12.1). Consider any horizontal geodesic ¢ in the
stratum f~1(0). If v is weakly bi-Lipschitz with constants py and K, then
for any integer n > 0, we have |[g],|, > Mig|g|0 _KO(;S—I__I + # +...+1).

Since 0 < ﬁ < 1, the sum tends to Mgbjl as n — +oo. Setting A_ = ;15 and
K = Ky M’)‘jl, this proves the inequality of item (1) for horizontal geodesics

in f~'(n), n € Z, and an integer time ¢. For the case in which ¢ is any
positive real number and g € f~!(r), r any real number, just decompose
Ot = O4—E[f] © OE[—(E[r]+1—n)] © OE[s]+1—r- Lhe map o, 1s a homeomorphism
from f~1(r) onto f~!(r+1) for any ¢ € [0, E[r]+1—r). That is, for any real r,
Lg]r+4l,, = lo(@)],, for ¢ € [0, E[r]+1—r). The monotonicity of the maps
l, 4 (see Lemma 12.1, item (2)) implies, for any r and ¢ € [0, E[r] + 1 —7),
that [o:(9)|,,, > ﬁlgl g|,. The conclusion follows. [

LEMMA 12.6. With the assumptions and notation of Lemma 12.5, if the
map P is a (strongly) hyperbolic forest-map of (I',dr) then the semi-flow
(01)secr+ s (strongly) hyperbolic with respect to any horizontal dr-metric.

The proof is similar to that of Lemma 12.5. [

Proof of Theorem 12.4. By Lemmas 12.5 and 12.6, a mapping-telescope
admits a structure of forest-stack (f .f,0:, H) with horizontal metric H such
that the semi-flow (o;),cg+ 1S a strongly hyperbolic semi-flow with respect
to 7. Hence Theorem 4.4 implies Theorem 12.4.  []

13. ABOUT MAPPING-TORUS GROUPS

We first recall the definition of a hyperbolic endomorphism of a group
introduced by Gromov [19].
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DEFINITION 13.1 ([19], [3]). An injective endomorphism o of the rank
n free group F, is hyperbolic if there exist A, > 1 and j, > O such that
for any w € F,, either \,|w| < \o/a (w)) or w admits a preimage a e (w)
such that Ao|w| < | =(w)|, where | .| denotes the usual word-metric.

We recall that a subgroup H in a group G is malnormal if w™'HwNH = {1}
for any element w ¢ H of G. We state our theorem about mapping-torus
groups as follows:

THEOREM 13.2. Let o be an injective hyperbolic endomorphism of the
rank n free group F,. If the image of « is a malnormal subgroup of F, then
the mapping-torus group G, = <x1, e Xyt Tt =alx), i=1,... ,n> IS
a hyperbolic group.

13.1 RELATIONSHIPS WITH MAPPING-TELESCOPES

We consider the rank n free group F, = (xi,...,x,). Let a be an injective
endomorphism of F,. Let G, = <x1, Xt Uit =alx), i=1,... ,n>
be the mapping-torus group of («,F,). We consider the Cayley graph I'
associated to the given system of generators. Let /[ be a loop in I' whose
associated word in the edges of I' reads a relation z“lxl-toz(x,-)—l . We attach a
2-cell by its boundary circle along any such loop /. The resulting topological
space is a 2-complex. This i1s the Cayley complex of the mapping-torus group
G, for the given presentation.

Let us check that the above Cayley complex is a mapping-telescope of
a forest-map. We consider the rose R, with n petals. We label each edge
by a generator x; of F,. We denote by v the simplicial map on R, such
that 1(x;) 1s a locally injective path whose associated word in the edges of
R, reads a(x;). Let us denote by 7T the universal covering of R, (T is
a tree) and by m: T — R, the associated covering-map. We denote by
@Z : T — T a simplicial lift of ¢ to T, that is = qu = 1Y om. We consider the
mapping-torus of (¢, R,), i.e. the 2-complex R, x [0,1]/(x,1) ~ ((x),0).
Then the universal covering of this mapping-torus is the mapping-telescope
of w F — F, where F and w are defined as follows:

e We denote by I the set of integers from 1 to Card(F,/Im(c)).
The different classes are written w;Im(a), i = 0,1,.... We denote by
v: I — {wo,wi,...} the bijection. Then the connected components of F
are in bijection with N’ Each connected component is the image, by a
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bijection p, of a sequence of Card(l) integers. Each connected component
p(xo, x1,...) of F is homeomorphic to T via By, x,..): pxo,x1,...) = T.

e We define the restriction of 1; to any connected component u((xp, X1, - - -))
as follows:

If Card(l) < +o00 then

/J'((x07x17 v )) — /'L((E[Card(l)] X1y ))
X — (7(])/8()60,)51,,,_ )¢ﬁ(xo,x1,... ))(x)
] = kCard(I) 4.

Yo, ) : {

where j < Card(l) satisfies El= 375
If Card(/) = +oc0o then

p((xo, X1,...))  — p((xr, %2, . .2))

JIN’((X % 7)): -1 s
o X —_> (’Y(XO)ﬂ(xO,xl’_”)¢ﬂ(XO,X1,...))(x)'

The mapping-torus of (¥, R,) is a 2-complex whose 1-skeleton is
the rose with n + 1 petals in bijection with {xi,...,x,,¢}. There is
one 2-cell for each relation t“lxl-toz(xi)_]. Thus the universal covering
described above is the Cayley complex for G, with the presentation

= (X1,..., %, 0 7't = alx;), i=1,...,n). We have thus proved
LEMMA 13.3. Let o be an injective endomorphism of F, = (x1,...,X,).
Let G, = <x1, e Xyt Tt =alx), i=1,. .. ,n> be the mapping-torus

group of a.. Let C(Gy,) be the Cayley complex of G, for the given presentation.
Then C(G,) is the mapping-telescope of a forest-map.

REMARK 13.4. If the endomorphism « is an automorphism then the
above Cayley complex is the mapping-telescope of a tree-map. The tree is
the universal covering of the rose with n petals. If the endomorphism « is
not injective then some element w € F,, satisfies w = 1 in G, ; the above
construction fails because of the corresponding loops in the Cayley graph.

Let o be an injective free group endomorphism. Let G, be the mapping-
torus group of «. Let C(G,) be the Cayley complex of G, for the usual pre-
sentation Go = (X1,..., X, 15 {7 xit = olx;), i=1,...,n). By Lemma 13.3,
C(G,) is a mapping-telescope of a forest-map. We now want to see what
happens with respect to metrics and dynamics. The Cayley graph of a group
is equipped with a metric which makes each edge isometric to the interval
(0,1). More generally, given a graph I', we call standard metric, and denote
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by d5., such a metric on I". We will call mapping-telescope standard metric
any mapping-telescope dj.-metric on C(Gy).

LEMMA 13.5. The mapping-torus group G, of an injective free group
endomorphism acts cocompactly, properly discontinuously and isometrically
on the Cayley complex C(G) equipped with any mapping-telescope standard
metric.

Proof. 'We consider the usual action by left translations of the group on
its Cayley graph. This action is extended in a natural way to a free action on
the Cayley complex C(G,). Let f denote the map giving the strata for the
structure of forest-stack of C(G,), see Lemma 13.3. For a mapping-telescope
metric, all the strata f~'(r) and f~!(r+1) are isometric. And for a mapping-
telescope standard metric all the strata f~!(n), n € Z, are equipped with the
standard metric. This readily implies that the above action is isometric. [

13.2 FREE GROUP ENDOMORPHISMS AND FOREST-MAPS

The main point of Lemma 13.6 below is the so-called ‘bounded-cancellation
lemma’ of [7] for free group automorphisms, and of [10] for the injective free
group endomorphisms.

LEMMA 13.6. Let a be an injective free group endomorphism. Let F and
¢ be the forest and the forest-map on F given by Lemma 13.3. Then @b is a
weakly bi-Lipschitz forest-map of F equipped with the standard metric d.

Proof. If w is any element in F, = (xi,...,x,), and |.|. denotes the
word-metric on F,, then |a(w)| p, S (maxi—y ., |o(x;)] F. )| w] F, - By definition

of the standard metric, and setting py = max;=; - o lax)] F o the map zp

satisfies dF(w(x),w(y)) < pody(x,y) for any pair of vertices x, y. If x, y are
not vertices, then they are joined in their stratum by a horizontal geodesic
which is the concatenation of a path between two vertices, with two proper
subsets of edges. By construction and simpliciality of 2; , proper subsets of
edges are dilated by a bounded factor when applying QZ , SO that the conclusion
follows for the upper bound.

If w is any element in F,, then

o W), < ( max [a™' ), )l

Setting 4 = max;—;__, |of1(xl-)[F” we get |a(w)|, > i[wlF Therefore

d%(zZ(x),@Z(y)) > M—adj;(x, y) for any pair of vertices x,y. The inequality
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for all points x,y does not follow as easily as for the upper bound,
since the map zz might identify points, and this could make the distance
decrease sharply. However, assume the existence of a constant Ky such that
Qp(x) w(y) = dp(x,y) < Kp. Any geodesic in F is the concatenation
of a geodesic between two vertices with two proper subsets of edges
of F. Thus the inequality d;(w(x) zp(y)) 11 dy(x,y) — 2Ko follows in
a straightforward way from the preceding assertions. Injective free group
endomorphisms satisfy the so-called ‘bounded-cancellation lemma’ (see [10],
and [7] for the particular case of automorphisms), i.e. there exists A, > 0
such that |a(wiwz)|p > |a(wi)|p + |a(wa)|, — Ay for any wi,wy in F,
with |wiwa|, = |wi|p +|wz|p . This 1nequa11ty gives a constant Ky = Ay +2
as required above, i.e. such that, if w(x) 1/;()1) then ds w(x,y) < Kp. Setting
1 = max(ug, n1) and K = 2Ky, we get Lemma 13.6. [

LEMMA 13.7. With the assumptions and notation of Lemma 13.6,

1) If « is hyperbolic then the forest-map is hyperbolic.

2) If « is hyperbolic and its image Im(ov) is malnormal, then the forest-
map is strongly hyperbolic. |

Proof. (1) is easy to check. Let us prove (2). The notation used is that
introduced in Section 13 when defining the forest F and the map ibv . If the
map is not strongly hyperbolic, there exists an infinite sequence of pairs of
connected components (7;,T!) such that 7; and 7] are identified under {bv
along a geodesic g; and the length of ¢; tends to 4+oco as i — +oo. Thus
there exists an infinite number of elements (i, u.) € F, —Im(c) X F,, — Im(c)
such that some geodesic word a;w;b; (resp. ajw;bl) connects two vertices
associated to elements in u; Im(a) (resp. in u, Im(cr)) where the length of the
w;’s tends to +oo as i — +00.

Observe that in particular qwb; € Im(a), aw;p; € Im(x), whereas
aw;b, ¢ Im(a) and djw;b; ¢ Im(c) because they carry an element of
u; Im(c) (resp. u.Im(c)) to an element of «] Im(c) (resp. of u; Im(c)). The
lengths of the a;, b;, al, b} can be assumed to be at most the maximum
of the lengths of the images under « of the generators of F,, which is
finite. Since there are only a finite number of pairs of elements of bounded
lengths, a same pair a, b; (resp. aj, bj) appears an infinite number of
times when listing the sequence of words aw;b; (resp. ajw;b}). The same
finiteness argument then gives two words w; C wy; with wy = ww; such
that aqyw;ib; € Im(a), aqqw;ib; € Im(e), awib; ¢ Im(a) and ajw;b; ¢ Im(a),
j= 1,2,
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1 -1 1.1
Thus alwlbIb wy - 1a,l € Im(e), alwlblb’, wy lw=ld';" € Im(a),
_ —1, =1y _
ajwbiby~ lwl wld'; ! ¢ Im(a). Now (alw la’l ) alw a, (a w a’, =
a,w’la’ 7 € Im(), whereas qqw™'d’; ' ¢ Im(e) and qw~la; l'e Im(a). We
thus get a contradiction to the malnormahty of Im() in F,. This completes

the proof. [

13.3 PROOF OF THEOREM 13.2

From Lemmas 13.6 and 13.7, the Cayley complex C(G,) is the mapping-
telescope of a strongly hyperbolic forest-map, equipped with the standard
metric. A Cayley complex is connected. Thus, from Theorem 12.4, C(G,) 18
a Gromov-hyperbolic metric space for any mapping-telescope standard metric.
From Lemma 13.5 the group G, acts cocompactly, properly discontinuously
‘ and isometrically on C(G,) equipped with a mapping-telescope standard
i metric. A classical lemma of geometric group theory (usually attributed to
; Effremovich, Svarc, Milnor — see [19] or [17] for instance), applied to quasi
| geodesic metric spaces, tells us that G, and C(G,) are quasi-isometric SO
that G, is a hyperbolic group. [

| REMARK 13.8. Another way of stating our main theorem about ‘forest-
stacks’, using the language of trees of spaces, goes roughly as follows: “An
| oriented R-tree of R-trees with the gluing-maps satisfying the conditions
| of hyperbolicity and strong hyperbolicity with uniform constants is Gromov-
hyperbolic.” Here ‘oriented R-tree’ means an R-tree 7 equipped with an
orientation going from the domain to the image of each attaching-map, and
a surjective continuous map f: 7 — R respecting this orientation. As a
corollary of our theorem, and in order to illustrate it, we chose to concentrate
on mapping-telescopes. We could as well consider spaces similar to mapping-
telescopes but where we allow the attaching-maps not to be the same at each
q step. Our only requirement is to have uniform constants of quasi-isometry,
| hyperbolicity and so on. Also, with respect to groups, a corollary could have
been stated dealing with HNN-extensions rather than just semi-direct products.

Another result which easily follows from our work could be more or less
stated as follows. “Let T be a tree of spaces X;, i=0,1,....Let ¢: T — T
be a map of T such that the mapping-telescope of each X; under 1 is
| Gromov-hyperbolic. If 1) induces a hyperbolic map on the tree resulting of
| the collapsing of each X; to a point, then the mapping-telescope of the tree
of spaces T under % is Gromov-hyperbolic.” We leave the precise statement
of such corollaries to the reader. Together with [14] where a new proof of the
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Bestvina-Feighn theorem is given for mapping-tori of surface groups, the last
one gives, thanks to [26], a new proof of the full version of the Combination
Theorem for mapping-tori of hyperbolic groups, namely: “If G is a hyperbolic
group and « is a hyperbolic automorphism of G, then G x, Z is a hyperbolic
group.”
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