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In the final section, we will see how the splitting of the extension associated
to G 1is related to the splitting of the extensions associated to N and Q that
appear in Theorem 2.2.

We end this section by recalling a very important result relating the inner,
“usual”, and outer automorphism groups of a connected compact Lie group.
This result is one of the main reasons why the case of compact Lie groups is
well controlled when applying the theory of group extensions, as we will see
in Section 3. For the proof, we refer to de Siebenthal [9, Théoréme, pp.46-47]
(for another approach consult Bourbaki [5], §4.10).

THEOREM 2.4 (de Siebenthal). Let G, be a connected compact Lie group
and let H C G, be a principal subgroup. Then the extension

Inn(G,) < Aut(G,) — Out(G,)

is split, i.e.
Aut(G,) = Inn(G,) X Out(G,) .

A possible splitting is given by s: Out(G,) — Aut(G,), where s(a) is the
unique automorphism in 7w~ (c) fixing H pointwise.

REMARK 2.5. The fact that the extension associated to Aut(G,) is split
was known before the work of de Siebenthal, at least in the semisimple case,
and appeared in a paper of Dynkin [10].

3. COMPACT LIE GROUPS AND EXTENSIONS

We assume knowledge of the classical relationship between group exten-
sions and related cohomology  groups of low degree, as first introduced by
Eilenberg and MacLane [11]. For readers not familiar with it, the textbooks
by Mac Lane [16], Robinson [21], or Adem-Milgram [2], provide a thorough
treatment; a more concise approach can be found in Kirillov’s book [15], and
a sketch in Brown’s [6]. We now want to apply this relationship to the case
of compact Lie groups. We fix a nonabelian connected compact Lie group
G,, a finite group I', and a homomorphism ¢: I' — Out(G,). Recall that
Z, denotes the center of G,. Choosing a principal subgroup H C G, and
fixing s as in Theorem 2.4, we get the commutative diagram
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I —2 > Out(G,) —= Aut(G,)
X l res \l] res
Aut(Z,) Aut(Z,)

In the sequel, we will use the notation o, = (s o @)(y), for v € I'. Let
E[, G,, ) C € denote the subset of equivalence classes giving rise to . In
the particular case of compact Lie groups, one has the following results.

PROPOSITION 3.1.
(i) The set of equivalence classes of extensions E(I', Go, @) is in bijection
with the cohomology group Hé(r; L)

(1) For all u € H%(F; Z,) the corresponding extension G, — G — T’
carries a natural structure of Lie group.

Proof. It suffices to check that £(I", G,, @) # @ to prove (i). But this
follows from Theorem 2.4: the semidirect product G = G, X0, I' €xists
for any . The second statement is easily deduced from classical Lie group
theory. [

The bijection in the latter proposition is not canonical, as it depends on
the choice of a particular element in £(I", G,, ). On the other hand, there is a
canonical bijection between Hé(F; Z,) and the set £(I', Z,, p) of equivalence
classes of extension of I' by Z, with action given by . Therefore, there
is a bijection A: E(I',Z,,p) — ET, G,, ) still depending on the previous
choice. Let us describe this bijection by first expliciting the cohomology group
HZ(T; Z,) = Z%(T; Z,)/B5(T'; Z,). Keeping the multiplicative notation in Z,,
the cocycles, i.e. the elements of Z%(I‘; Z,), are functions h: I’ x I' — Z,
satisfying h(vyi,e) = h(e,~,) = e (normalization), and

(6 (v1, 72, 73) = 04, (A(72,73)) - B(v17y2,73) " - (1, 7273) - By, ) ™) =

for all vy,72,7v3 € I'. The coboundaries, i.e. the elements of BZ z(152,), are
functions &: I" x I' — Z, such that there exists a function k: F — Z,, with
k(e) = e, satisfying

h(y1,72) = (6k)(v1,72) = 04, (k(72)) - k(y172) ™" - k(1)

for all y1,v, € I". Let us choose the semidirect product G,xI" associated to the
section s as the extension corresponding to the neutral element in HZ 7157Z,).
Then, for u = [h] € HX 7I5Z,), the corresponding class of extensmns 18
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given by [G, — G, — I'], where G; is the set G, x I' equipped with the
multiplication |

(9,7 *n (9", = (9 04(g") - (v, 7)), v Y)

(see [16], Chapter 1V, §4 and §8). We will also denote by G, — G, -» T’
any representative of the class of extensions corresponding to u € H%(F; Z).
We now give a canonical description of the inverse of A, i.e. a description
that does not depend on the choice of a particular element in E(T', G, ).

LEMMA 3.2. For any principal subgroup H in G,, the map

O: £, Go, ) — EX, Zo, D), [Go = G — T+ [Zy = Zg(H) — T']

is the inverse of A (and does not depend on the choice of H). In particular
it is a bijection.

Proof. As centralizers of principal subgroups are preserved by isomor-
phisms of G, © does not depend on the choice of a representative in
[Go — G = TI. Let u = [Z, — E, - I'] = [h] € H3(T',Z,). Then, we have
the commutative diagram

oc Eh r

]

OL—>G:G/1———»F

where Ej, 1S Z, x I as a set. Let us show that Ej, = Z;,(H), H being the
principal subgroup of G, corresponding to the fixed section s. By Theorem
2.2, it i1s enough to check that Ej 1s contained in Zg,(H). Let (z,v) € Ej
and (x,e) € H C G, C Gy,. We calculate

@,7) *n (x,€) = (z- 04(x) - B(v, €),7)
— (Z - X, 7) y
and
()C, 8) *h (Z7 fY) = ()C : O'e(Z) : h(€7 7)7 7)

=(x-2,7)
:(Z'X,’)/),

by normalization, and because the restriction of o, to H is the identity by
the choice of the section s.
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Now, as the principal subgroups are all conjugate by an element of G, (see
[8], Théoreme, pp.46-47), so are their centralizers. Therefore, the extensions
Zo — Zg(H) — I', for H running through the family of principal subgroups,
all belong to the same class. This shows that © is well defined and satisfies
©®o A =idgrz, - As A is bijective, this shows that @ = A~'. [

We summarize the situation exposed in this section.

THEOREM 3.3. Suppose given G,, a homomorphism ¢:I" — Out(G,)
and an extension Z, — Z — I, for which the homomorphism T' — Aut(Z,)
coincides with @. Then, up to equivalence of extensions, there exists a unique
compact Lie group G fitting into the commutative diagram

ZoC Z r

|

G,© G r

|+

Inn(G,)—— Aut(G,) — Out(G,)

where the rows are group extensions. Moreover the given data allow the
construction of an extension G, — G — I, in which the subgroup Z is the
centralizer of a principal subgroup.

Conversely, the class of the extension Z, — Z —» T in G, — G - I can
be recovered by taking the centralizer of any principal subgroup.

4. PROOF OF THE MAIN THEOREM AND EXAMPLES

We are almost ready to show that the map described in the Introduction
1s an action of Out(G,) x Aut(I") on the set

£~ ]_[ HX(TZ,).
@ E€Hom(T',0ut(G,))
We first introduce some notation. For an element ¢ in a group K, we
will write ¢, for conjugation by g, i.. cg(x) = gxg~!, for all x in K.
For o € Out(G,), we will choose & € Aut(G,) such that (@) = «,
and we will denote the restricted automorphism by & € Aut(Z,). Finally,
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