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282 F. GAUTERO

LEMMA 5.4. Let p be a horizontal geodesic which admits a decomposition
in r subpaths p; such that for some constant L > 0, for any i = 1,...,r,
either |[Dilrtn,|, ity S < |pil, or L > |[pilr+nsl, tnty ;|.. Then there exists
a constant Csa(n,r,L), which is increasing in each variable, such that if p
is dilated in the future after nty, then |p| < Cs4(n,r,L).

Proof. We set n =1 in order to simplify the notation; the general case
is treated in the same way. Up to permuting the indices, |[pily+s|,., > |Pil,

for i=1,...,j. Since p is dilated in the future after %,
JL+ Z pil, > A Z pil, -
i=j+1 i=1
Therefore |p|, < /\,0 .4

5.2 STRAIGHT TELESCOPIC PATHS

DEFINITION 5.5. A straight telescopic path is a telescopic path § such
that if x, y are any two points in § with x € OT(y)UO~(y) then the subpath
of § between x and y is equal to the orbit-segment of the semi-flow between
x and y.

If S is a path containing a point x, let S;; C S be the maximal subpath of §
containing x, whose pulled-tight projection [S J¢e+: on f~1(f(x)+1) is well
defined. The point o;(x) does not necessarily belong to [Sylrx+:. However
there exists a unique point in [Sy/]r+, Which minimizes the horizontal
distance between o,(x) and [Sy ;l¢x+:- This point is denoted by X;. Lemma 5.6
below gives an upper bound, depending on #, for the telescopic distance
between x and X;.

LEMMA 5.6. Let S be any straight telescopic path. If t is any non negative
real number, there exists a constant Cs¢(t) > t, which increases with t, such
that any point x € S is at telescopic distance smaller than Csg(t) from the
point X; (see above).

Proof. If o4x) € [Sxilfe+:,» We set Cse(f) = . Since S is straight, if
o(x) & [Sxlfe+:, x belongs to a cancellation c¢ whose endpoints lie in the
past orbits of X;. The bounded-cancellation property gives an upper bound on
the horizontal length of ¢. This leads to the conclusion.  []
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