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2.2 Action d'un endomorphisme et ramification

Si /: M -A M est une application holomorphe surjective de M, la

transformation /* consistant à prendre l'image réciproque d'une forme

holomorphe par / définit un élément du groupe linéaire GL(H°(M,Km))-

En notant F la transformation projective associée à /*, on a la relation

(3) Fo0! =0j o/.

Cette remarque est valable en remplaçant Km par ses puissances tensorielles

positives K^k, 0i par 0^ et F par l'action Fk de / sur les sections de K$k.

Lorsque la dimension de Kodaira de M est strictement positive, il existe ainsi

une fibration méromorphe invariante par tout endomorphisme. L'action sur la

base de la fibration est linéaire: c'est la restriction de Fk à l'image de 0£.
Le théorème suivant, pour lequel nous renvoyons à [28], §VI, et à [18], §7.6,

se déduit facilement de ce qui vient d'être dit.

THÉORÈME 2.1. Soient M une variété complexe compacte dont la
dimension de Kodaira est positive ou nulle et 0^: M —PK^)*),
k > 0, les applications pluricanoniques. Si f est une transformation holomorphe

surjective de M, il existe une transformation projective périodique Fk de

P (H°(M,K®k)*) telle que 0k of Fko®k.

Remarque 2.1. Ceci montre que les endomorphismes des variétés

complexes compactes dont la dimension de Kodaira est strictement positive se

réduisent à des variétés de dimension inférieure. Les cas intéressants se situent
donc en dimension de Kodaira 0 et — oo. Lorsque la dimension de Kodaira de

M est maximale, i.e. kod(M) dime (M), les fibres génériques de l'application
0£ sont finies; par conséquent, tout endomorphisme de M est inversible et
le groupe des automorphismes de M est fini (voir [18], §7).

Si /: M -A M est une transformation holomorphe surjective d'une variété

complexe compacte, le diviseur de ramification Rf de / est défini comme
l'ensemble des points au voisinage desquels / n'est pas un difféomorphisme
local sur son image. C'est le lieu d'annulation du jacobien de /, donc Rf est
l'ensemble vide ou un diviseur. Le théorème suivant montre que Rf est vide
dès que la dimension de Kodaira de M est positive ou nulle. La référence
la plus ancienne que je connaisse pour ce résultat est l'article [23] de Klaus
Peters.
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THÉORÈME 2.2 (K. Peters). Soit M une variété complexe compacte dont
la dimension de Kodaira est positive ou nulle. Toute application holomorphe
surjective de M dans M est un revêtement non ramifié.

Démonstration. Supposons que Rf n'est pas vide et fixons une section

non nulle lo de K^k, pour k positif convenable. L'image réciproque de uj

par l'itéré n&me de / est une section de K^k qui s'annule sur l'union des

diviseurs effectifs Rf, f~1(Rf), f~n~l(Rf). Puisque / est surjective, on
obtient ainsi des sections du fibré en droites K^k dont le lieu des zéros

(comptés avec multiplicité) croît indéfiniment. Ceci est impossible.

2.3 Fibration d'Albanese

Pour les variétés kâhlériennes, il existe une deuxième fibration naturelle
invariante par tout endomorphisme : la fibration d'Albanese. Notons H°(M, £2j^)

le C-espace vectoriel constitué des 1-formes holomorphes globales de M.
Puisque M est supposée kâhlérienne, chaque forme holomorphe est fermée.

En particulier, lorsque 7 est un lacet de M, l'intégration d'une 1-forme

holomorphe

ne dépend que de la classe d'homologie [7] G H1 (M, Z). La théorie de Hodge
montre que la partie sans torsion de H1 (M, Z) se plonge de cette manière en

un réseau cocompact de H°(M, QlM)*. Le tore complexe obtenu en quotientant
H°(M, Q]f)* par ce réseau sera noté Alb(M) : c'est la variété d'Albanese de M.

Choisissons un point base x dans M. Si y est un point de M et uj est une

1-forme fermée, l'intégrale de u entre x et 7 dépend du chemin d'intégration
choisi, mais les différentes valeurs obtenues coïncident modulo l'intégration
de uj sur les lacets basés en x. On dispose ainsi d'une application holomorphe

pour chaque choix d'un point base x dans M. C'est la fibration d'Albanese
de M. Elle est équivariante sous l'action de tout endomophisme /, l'action
induite par / sur Alb(M) étant la transformation affine associée à l'action
de / par image réciproque sur les 1-formes holomorphes (le paramètre de

translation provient du choix du point base x).
Pour trouver des endomorphismes non inversibles qui ne préservent aucune

fibration, on peut donc supposer que la fibration d'Albanese de M est triviale,
c'est-à-dire que ses fibres sont finies ou que l'image est un point. Dans
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