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2.2 ACTION D’UN ENDOMORPHISME ET RAMIFICATION

Si f: M — M est une application holomorphe surjective de M, la
transformation f* consistant a prendre l’image réciproque d’une forme
holomorphe par f définit un élément du groupe linéaire GL(HO(M , Km)) .
En notant F la transformation projective associée & f*, on a la relation

(3) Fo® =0;0f.

Cette remarque est valable en remplacant Kj, par ses puissances tensorielles
positives K®% @, par O et F par I’action F; de f sur les sections de K]%k.
Lorsque la dimension de Kodaira de M est strictement positive, il existe ainsi
une fibration méromorphe invariante par tout endomorphisme. L’action sur la
base de la fibration est linéaire: c’est la restriction de Fj; a I’image de ©.
Le théoréme suivant, pour lequel nous renvoyons a [28], § VI, et a [18], §7.6,
se déduit facilement de ce qui vient d’étre dit.

THEOREME 2.1. Soient M une variété complexe compacte dont la di-
mension de Kodaira est positive ou nulle et ©: M --» PHO(M,KS)*),
k > 0, les applications pluricanoniques. Si f est une transformation holomor-
phe surjective de M, il existe une transformation projective périodique Fj de
P(HO(M,K2")*) telle que © of = Fy o 6.

REMARQUE 2.1. Ceci montre que les endomorphismes des variétés com-
plexes compactes dont la dimension de Kodaira est strictement positive se
réduisent a des variétes de dimension inférieure. Les cas intéressants se situent
donc en dimension de Kodaira 0 et —oo. Lorsque la dimension de Kodaira de
M est maximale, i.e. kod(M) = dim¢(M), les fibres génériques de I’application
O, sont finies; par conséquent, tout endomorphisme de M est inversible et
le groupe des automorphismes de M est fini (voir [18], §7).

Si f: M — M est une transformation holomorphe surjective d’une variété
complexe compacte, le diviseur de ramification Ry de f est défini comme
I’ensemble des points au voisinage desquels f n’est pas un difféomorphisme
local sur son image. C’est le lieu d’annulation du jacobien de f, donc Ry est
I'ensemble vide ou un diviseur. Le théoréme suivant montre que Ry est vide
des que la dimension de Kodaira de M est positive ou nulle. La référence

la plus ancienne que je connaisse pour ce résultat est I’article [23] de Klaus
Peters.
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THEOREME 2.2 (K. Peters). Soit M une variété complexe compacte dont
la dimension de Kodaira est positive ou nulle. Toute application holomorphe
surjective de M dans M est un revétement non ramifié.

Démonstration. Supposons que Ry n’est pas vide et fixons une section
non nulle w de K2, pour k positif convenable. L’ image réciproque de w
par I'itéré n®™ de f est une section de Kﬁ’k qui s’annule sur 1’union des
diviseurs effectifs Ry, f~1(Rs), ..., f7""Y(Ry). Puisque f est surjective, on
obtient ainsi des sections du fibré en droites Ko© dont le lieu des zéros
(comptés avec multiplicité) croit indéfiniment. Ceci est impossible.

2.3 FIBRATION D’ ALBANESE

Pour les variétés kahlériennes, il existe une deuxiéme fibration naturelle
invariante par tout endomorphisme : la fibration d’ Albanese. Notons M , Q}W)
le C-espace vectoriel constitué des 1-formes holomorphes globales de M.
Puisque M est supposée kahlérienne, chaque forme holomorphe est fermée.
En particulier, lorsque <y est un lacet de M, I’intégration d’une 1-forme

holomorphe
w / w
gt

ne dépend que de la classe d’homologie [y] € H'(M,Z). La théorie de Hodge
montre que la partie sans torsion de H'(M,Z) se plonge de cette maniére en
un réseau cocompact de H°(M, Qi,)*. Le tore complexe obtenu en quotientant
HO(M , 9}4)* par ce réseau sera noté Alb(M) : c’est la variété¢ d’ Albanese de M.

Choisissons un point base x dans M. Si y est un point de M et w est une
1 -forme fermée, I’intégrale de w entre x et y dépend du chemin d’intégration
choisi, mais les différentes valeurs obtenues coincident modulo 'intégration
de w sur les lacets basés en x. On dispose ainsi d’une application holomorphe

4) ay: M — Alb(M), yr—>/y

pour chaque choix d’un point base x dans M. C’est la fibration d’Albanese
de M. Elle est équivariante sous l’action de tout endomophisme f, 1’action
induite par f sur Alb(M) étant la transformation affine associée a 1’action
de f par image réciproque sur les 1-formes holomorphes (le paramétre de
translation provient du choix du point base x).

Pour trouver des endomorphismes non inversibles qui ne préservent aucune
fibration, on peut donc supposer que la fibration d’Albanese de M est triviale,
c’est-a-dire que ses fibres sont finies ou que I’'image est un point. Dans
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