Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 49 (2003)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: CARACTÉRISATION GÉOMÉTRIQUE DES SOLUTIONS DE

MINIMAX POUR L'ÉQUATION DE HAMILTON-JACOBI

Autor: Capitanio, Gianmarco

Kapitel: 1.3 Le niveau critique de minimax

DOI: https://doi.org/10.5169/seals-66676

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les deux propositions sont une conséquence immédiate du choix de l'indice p_0 dans la preuve du lemme algébrique.

PROPOSITION 1.5. Deux points critiques de f liés le sont aussi en tant que points critiques de -f.

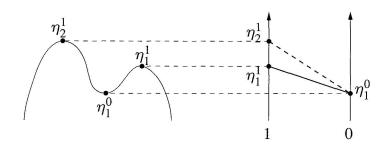


FIGURE 2 $\label{eq:Figure 2} \text{Diagrammes de Morse de } \xi \mapsto -(\xi^4 - \xi^2 + \xi)$

Démonstration. Un point critique ξ_{ℓ}^k de f, d'indice k, est un point critique de -f, d'indice K-k. Soit $c:=f(\xi_{\ell}^k)$; d'après le Théorème 1.2 on a

$$E_f^{c+\epsilon} \simeq E_f^{c-\epsilon} \cup \sigma_\ell^k \,, \quad E_{-f}^{-c+\epsilon} \simeq E_{-f}^{-c-\epsilon} \cup \tau_m^{K-k} \,.$$

Or, puisque $\partial \sigma_{\ell}^k$ et $\partial \tau_m^{K-k+1}$ sont enchaînées, on a $[\sigma_j^i, \sigma_h^{i-1}] = \pm [\tau_h^{K-i+1}, \tau_j^{K-i}]$ (voir [DNF], vol. III, §18). Il s'ensuit que les complexes de Morse de f et de -f ont les mêmes couples de points critiques incidents. Puisque l'on obtient le complexe de -f de celui de f par une symétrie qui ne change pas la pente des segments (cf. Figure 2), la proposition précédente entraîne que les couples de points critiques liés sont les mêmes.

1.3 LE NIVEAU CRITIQUE DE MINIMAX

Soit maintenant $f \colon E = \mathbf{R}^K \to \mathbf{R}$ une fonction de classe C^2 , quadratique à l'infini, c'est-à-dire $f(\xi) = Q_{\infty}(\xi)$ pour $|\xi|$ assez grand, où Q_{∞} est une forme quadratique non dégénérée d'indice k_{∞} . On ne suppose pas nécessairement que f soit de Morse excellente. Pour $\lambda \in \mathbf{R}$ considérons la famille d'inclusions naturelles $i_{\lambda} \colon E^{\lambda} \to E$, qui induit les homomorphismes $i_{\lambda}^* \colon \widetilde{H}_*(E, E^{-\infty}) \to \widetilde{H}_*(E^{\lambda}, E^{-\infty})$ des groupes d'homologie relative réduite à valeurs en \mathbf{Q} .

Comme f est quadratique à l'infini, on a

$$\widetilde{H}_*(E, E^{-\infty}) \simeq \widetilde{H}_*(E/E^{-\infty}) \simeq \widetilde{H}_*(\mathbf{S}^{k_\infty}).$$

Soit Γ un générateur de $\widetilde{H}_{k_{\infty}}(E, E^{-\infty}) \simeq \mathbf{Q}$.

DÉFINITION. On appelle minimax de f le nombre réel

$$\min \max(f) := \inf\{\lambda \in \mathbf{R} \mid i_{\lambda}^* \Gamma \neq 0\}.$$

REMARQUE. Puisque la topologie des niveaux change au passage de ce niveau, le minimax est une valeur critique de f.

Dans le cas des fonctions de Morse excellentes, on peut caractériser le minimax d'une fonction en utilisant la classification de ses points critiques donnée au § 1.2.

Théorème 1.6. Si f est une fonction de Morse excellente, quadratique à l'infini, elle admet un seul point critique libre, d'indice k_{∞} , et le minimax de f est le niveau critique réalisé par ce point.

Démonstration. Soit ξ un point critique de f, Ξ le générateur correspondant du complexe de Morse en forme canonique. Alors ξ est libre si et seulement si

$$\partial \Xi = 0$$
 et $\Xi \notin \partial M^f$,

c'est-à-dire si et seulement si Ξ est le représentant d'une classe $[\Xi]$ non nulle dans $H_*(M^f,\partial)$. D'après l'isomorphisme $\widetilde{H}_*(E,E^{-\infty})\simeq \widetilde{H}_*(M_*^f,\partial_*)$ on déduit qu'il existe un seul générateur $\Xi_\ell^{k_\infty}$ tel que $[\Xi_\ell^{k_\infty}]$ est bien définie et non nulle dans $H_*(M_*^f,\partial_*)$. Par conséquent, f a un seul point critique libre, d'indice k_∞ , et le minimax de f est réalisé par ce point. \square

Pour pouvoir utiliser cette caractérisation du minimax il faut se ramener au cas des fonctions de Morse excellentes, c'est-à-dire des fonctions génériques. Pour cela il suffit de "déformer" un peu notre fonction.

DÉFINITION 1.7. Une déformation de f est un élément g de $C^2(\mathbf{R}^K;\mathbf{R})$ tel que $g(\xi)=f(\xi)$ pour $|\xi|$ assez grand. Une petite déformation de f est une déformation proche de f pour la norme C^2 .

Théorème 1.8. Le minimax est stable par petites déformations de f.

Démonstration. Soient $c_1 < \cdots < c_r$ les valeurs critiques de f, $\epsilon > 0$ fixé, assez petit pour que $c_i + \epsilon < c_{i+1} - \epsilon$ pour tout $i = 1, \ldots, r-1$. Si g est une déformation de f assez petite, ses valeurs critiques sont contenues dans la réunion des ensembles $]c_i - \epsilon$, $c_i + \epsilon[$ (cf. Figure 3).

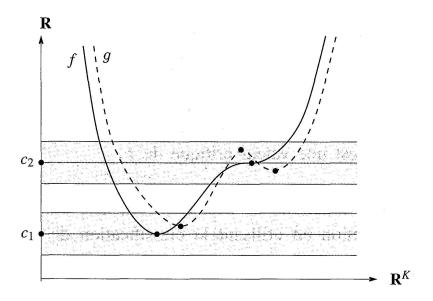


FIGURE 3
Petite déformation qui rend générique une fonction non de Morse

Par conséquent, pour tout i, les ensembles $E^{c_i+\epsilon}$ et $E_g^{c_i+\epsilon}$ sont difféomorphes, aussi bien que les ensembles $E^{c_i-\epsilon}$ et $E_g^{c_i-\epsilon}$. Il s'ensuit que

$$\widetilde{H}_*(E^{c_i+\epsilon}) \simeq \widetilde{H}_*(E_g^{c_i+\epsilon}), \qquad \widetilde{H}_*(E^{-\infty}) \simeq \widetilde{H}_*(E_g^{-\infty}).$$

Si on pose

$$A_k := H_k(E^{-\infty}), \quad B_k := \widetilde{H}_k(E^{c_i + \epsilon}), \quad C_k := \widetilde{H}_k(E^{c_i + \epsilon}, E^{-\infty}),$$

 $A'_k := H_k(E_q^{-\infty}), \quad B'_k := \widetilde{H}_k(E_q^{c_i + \epsilon}), \quad C'_k := \widetilde{H}_k(E_q^{c_i + \epsilon}, E_q^{-\infty}),$

on a les suites exactes longues en homologie relative:

Le "lemme des cinq" bien connu entraı̂ne que la flèche \star est aussi un isomorphisme: $\widetilde{H}_k(E^{c_i+\epsilon},E^{-\infty})\simeq \widetilde{H}_k(E^{c_i+\epsilon},E^{-\infty})$. Si on note $u=c_\ell$ le minimax de f, il en résulte que

$$\widetilde{H}_{k_{\infty}}(E_g^{u+\epsilon}, E_g^{-\infty}) \neq 0$$
 et $\widetilde{H}_{k_{\infty}}(E_g^{c_i+\epsilon}, E_g^{-\infty}) = 0$, $\forall i = 1, \dots, \ell-1$, donc le minimax de g appartient à l'ensemble $]u - \epsilon, u + \epsilon[$, ce qui démontre le théorème. \square

Le minimax de f admet la construction "duale" naturelle suivante. Soient $\check{E}^c := E^{-c}_{-f}, \ j_\lambda \colon \check{E}^\lambda \hookrightarrow E$ la famille d'inclusions naturelles et Δ un générateur de $\widetilde{H}_{K-k_\infty}(E, \check{E}^{+\infty}) \simeq \mathbf{Q}$.

DÉFINITION. On appelle max-min de f le nombre

$$\max \min(f) := \sup \{ \lambda \in \mathbf{R} \mid j_{\lambda}^* \Delta \neq 0 \} = -\min \max(-f).$$

THÉORÈME 1.9. Le minimax de f coincide avec le max-min.

Démonstration. D'après le Théorème 1.8 on peut supposer f générique, donc de Morse excellente. Alors on déduit de la Proposition 1.5 que f et -f ont le même point critique libre. \square

Le résultat suivant sera utile plus loin.

PROPOSITION 1.10. Soit f une fonction excellente, $\bar{\xi}$ un point critique dégénéré de f, de valeur critique $c:=f(\bar{\xi})$. Supposons que pour tout $\epsilon>0$ il existe deux déformations g,h de f telles que :

- (i) g et h sont ϵ -proches de f;
- (ii) g n'a aucune valeur critique dans $]c \epsilon, c + \epsilon[$;
- (iii) h a deux valeurs critiques, $c_1 = f(\bar{\xi}_1)$ et $c_1 = f(\bar{\xi}_2)$ dans $]c \epsilon, c + \epsilon[$, telles que ξ_1 et ξ_2 sont non dégénérés. Alors ξ_1 et ξ_2 sont liés.

Démonstration. Le même argument que pour la preuve du Théorème 1.8 (où l'on considère $E^{c-\epsilon}$ au lieu de $E^{-\infty}$) montre que

$$\widetilde{H}_*(E_q^{c+\epsilon}, E_q^{c-\epsilon}) \simeq \widetilde{H}_*(E_h^{c+\epsilon}, E_h^{c+\epsilon})$$
.

Or, d'après le Théorème 1.2, on a $\widetilde{H}_*(E_h^{c+\epsilon}, E_h^{c-\epsilon}) = 0$. Par conséquent $\widetilde{H}_*(E_g^{c+\epsilon}, E_g^{c-\epsilon}) = 0$, c'est-à-dire ξ_1 et ξ_2 sont incidents. Il s'ensuit que ξ_1 et ξ_2 sont liés (Proposition 1.3). \square

2. LA SOLUTION DE MINIMAX

2.1 Rappels de géométrie symplectique

Soit X une variété différentielle de dimension n, $T^*X = \{(x;y)\}$ le fibré cotangent³) de X, $\pi \colon T^*X \to X$ la projection naturelle $(x,y) \mapsto x$. Le fibré T^*X , muni de la forme symplectique canonique $dy \land dx$, est une variété symplectique de dimension 2n.

³) Pas nécessairement trivial.