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8 G. CAPITANIO
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REMARQUES.

(1) Tout complexe (avec générateurs ordonnés) admet une forme canonique.
De plus, cette forme est uniquement déterminée par le complexe initial
(voir [Bar]).

(2) Sur les espaces M,{ on peut définir un autre opérateur de bord
§: M] — M]_, par la formule

665 = BELETH &1,

ou 5(55 ,Ek=1) est le nombre (algébrique) de trajectoires intégrales du champ
de vecteurs Y := —Vf/|Vf|* de £ a €. Puisque Iattachement des cellules
o est induit par la rétraction des espaces E* le long des trajectoires intégrales
de Y, ona [£5: €511 £ 0 si et seulement §’il existe (au moins) une trajectoire
de Y entre les deux points critiques correspondants. Ainsi, d’apres le remarque
précédent, les complexes (Mf ,04) et (MI ,04) ont la méme forme canonique.

1.2 POINTS CRITIQUES INCIDENTS, LIES ET LIBRES

Soit (Mf ,0.) le complexe de Morse en forme canonique d’une fonction
de Morse excellente f: E = RX — R. A chaque point critique f’g correspond
le générateur Ef, c’est-a-dire

E’é‘:ZaJ- f}‘, avec oy # 0.

j<e

DEFINITION. On dit que deux points critiques & ’g et &1 de f sont
incidents si [£f : €711 40, liés si 025 = E5-1. Un point critique est libre
s’il n’est 1i€ a aucun point critique.
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DEFINITION.  On appelle diagramme (du complexe) de Morse la représen-
tation suivante du complexe de Morse de f. On considére K + 1 axes réels
verticaux (avec la méme échelle et I’origine a la méme hauteur), numérotés,
de gauche a droite, de K a 0. Sur le i-me axe on considere les points
critiques de f d’indice i, disposés selon leur valeur critique. On joint par un
segment en tirets les couples de points critiques incidents, par un segment
continu les couples de points critiques liés (cf. Figure 1).

FIGURE 1
Diagrammes de Morse de & — £* — €2 4+ ¢

REMARQUES. Considérons un point critique &5 de f.

(1) Les segments qui ont £ comme extrémité sont tous du méme coté de
I’axe ou se trouve &5, car 9* = 0.

(2) Les segments (orientés du point d’indice plus grand vers celui d’indice
plus petit) ont tous pente négative, car si [£f : €511 £ 0 alors f(£5) > f(&& 1.

(3) Un point critique peut €tre une extrémité de plusieurs segments en
tirets, mais d’un seul segment continu (au plus).

PROPOSITION 1.3.  Soit (féf, =1y un couple de points critiques liés. Alors
Ek=1 est le point critique de valeur critique maximale parmi les points critiques
incidents a flg tels que [§]'F : =11 = 0 pour tout j < £ ; f'g est le point critique
de valeur critiqgue minimale parmi les points critiques incidents a €571 tels
que [£f:€71=0 pour tout j > m.

PROPOSITION 1.4.  Un point critique £ est libre si et seulement si pour

tout point critique n incident a &, il existe un point critique &', incident a n,
tel que

[FE) = fm) < [£©) —fm)].
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Les deux propositions sont une conséquence immédiate du choix de I’indice
po dans la preuve du lemme algébrique.

PROPOSITION 1.5. Deux points critiques de f liés le sont aussi en tant
que points critiques de —f.

FIGURE 2
Diagrammes de Morse de & — —(£% — €2 + §)

Démonstration. Un point critique fﬁf de f, d’indice k, est un point critique
de —f, d’indice K — k. Soit ¢ ::f(géf); d’apres le Théoréme 1.2 on a

Eff*~E“Uoy, E{T“~E U .

Or, puisque do§ et 75 %1 sont enchainées, on a [0, 0} '] = +[ry T, 757
(voir [DNF], vol. III, §18). Il s’ensuit que les complexes de Morse de f et de
—f ont les mémes couples de points critiques incidents. Puisque 1’on obtient
le complexe de —f de celui de f par une symétrie qui ne change pas la
pente des segments (cf. Figure 2), la proposition précédente entraine que les
couples de points critiques liés sont les mémes.  []

1.3 LE NIVEAU CRITIQUE DE MINIMAX

Soit maintenant f: E = RX¥ — R une fonction de classe C?, quadra-
tique & linfini, c’est-a-dire f(§) = Qoo(§) pour [£| assez grand, ol Q.
est une forme quadratique non dégénérée d’indice k... On ne suppose pas
nécessairement que f soit de Morse excellente. Pour A € R considérons la
famille d’inclusions naturelles iy: E* < E, qui induit les homomorphismes
0y : H.(E,E~®) — H.(E*,E~*°) des groupes d’homologie relative réduite 2
valeurs en Q.

Comme f est quadratique a l’infini, on a

H.(E,E~*) ~ H,(E/E~®) ~ H,(S%).
Soit T un générateur de Hy_(E,E~*°) ~ Q.
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