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8 G. CAPITANIO

Remplaçons le générateur Ekpo
1

par Ekpo
1 := 1 + T,po>Pep apEt> '

> qui

est encore de la forme (1), car dEp~l dEkp~l 0. L'égalité (2) s'écrit alors

P0 qQ
ainsi le générateur

+1 := (^+1
Po qeQ

vérifie dEk+l Ek~l.

Remarques.
(1) Tout complexe (avec générateurs ordonnés) admet une forme canonique.

De plus, cette forme est uniquement déterminée par le complexe initial
(voir [Bar]).

(2) Sur les espaces m[ on peut définir un autre opérateur de bord
S : m[ -4 m(_ j par la formule

m

où ß(£k, ^k~1 est le nombre (algébrique) de trajectoires intégrales du champ
de vecteurs F := —V//| V/j2 de à Puisque l'attachement des cellules
ak est induit par la rétraction des espaces Ex le long des trajectoires intégrales
de F, on a [£* : £*-1] / 0 si et seulement s'il existe (au moins) une trajectoire
de F entre les deux points critiques correspondants. Ainsi, d'après le remarque
précédent, les complexes (M{,<9*) et ont la même forme canonique.

1.2 Points critiques incidents, liés et libres

Soit (Af{,9*) le complexe de Morse en forme canonique d'une fonction
de Morse excellente / : E -4 R. A chaque point critique £* correspond
le générateur Ek, c'est-à-dire aJ$> avec a^°

J<C

Définition. On dit que deux points critiques et de / sont

incidents si [£* : £^_1] ^ 0, liés si <9S^ Un point critique est

s'il n'est lié à aucun point critique.
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Définition. On appelle diagramme (du complexe) de Morse la représentation

suivante du complexe de Morse de /. On considère K + 1 axes réels

verticaux (avec la même échelle et l'origine à la même hauteur), numérotés,

de gauche à droite, de K à 0. Sur le i -ème axe on considère les points

critiques de / d'indice /, disposés selon leur valeur critique. On joint par un

segment en tirets les couples de points critiques incidents, par un segment

continu les couples de points critiques liés (cf. Figure 1).

Remarques. Considérons un point critique de /.
(1) Les segments qui ont comme extrémité sont tous du même côté de

l'axe où se trouve car d2 0.

(2) Les segments (orientés du point d'indice plus grand vers celui d'indice
plus petit) ont tous pente négative, car si : Cm-1] 7^ 0 alors f(0) >/(£m~1)-

(3) Un point critique peut être une extrémité de plusieurs segments en

tirets, mais d'un seul segment continu (au plus).

Proposition 1.3. Soit (^,Cm_1) un couple de points critiques liés. Alors
est le point critique de valeur critique maximale parmi les points critiques

incidents à 0 tels que [£ : 1] 0 pour tout j < i ; est le point critique
de valeur critique minimale parmi les points critiques incidents à 1 tels

que [£* :
1

] 0 pour tout j > m.

PROPOSITION 1.4. Un point critique £ est libre si et seulement si pour
tout point critique 77 incident à il existe un point critique incident à rj,

0

Figure 1

Diagrammes de Morse de £ M- £4 — £2 + £

tel que

\m') ~m\ < 1/(0 -/(oi •
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Les deux propositions sont une conséquence immédiate du choix de l'indice
Po dans la preuve du lemme algébrique.

PROPOSITION 1.5. Deux points critiques de f liés le sont aussi en tant
que points critiques de —f.

Démonstration. Un point critique ^ de /, d'indice k, est un point critique
de —/, d'indice K — k. Soit c :==/(£f) ; d'après le Théorème 1.2 on a

Or, puisque dcr\ et dr^~k+l sont enchaînées, on a [crj, c^_1] ±[rjf~l+l, TjK~1]

(voir [DNF], vol. III, § 18). Il s'ensuit que les complexes de Morse de / et de

—f ont les mêmes couples de points critiques incidents. Puisque l'on obtient
le complexe de —f de celui de / par une symétrie qui ne change pas la

pente des segments (cf. Figure 2), la proposition précédente entraîne que les

couples de points critiques liés sont les mêmes.

1.3 Le niveau critique de minimax

Soit maintenant /: E —> R une fonction de classe C2, quadratique

à l'infini, c'est-à-dire /(£) Qoo(0 Pour ICI assez grand, où goo

est une forme quadratique non dégénérée d'indice k^. On ne suppose pas
nécessairement que / soit de Morse excellente. Pour À G R considérons la

famille d'inclusions naturelles i\ : Ex s- E, qui induit les homomorphismes
i*x : H^(E,E~°°) —> H*(EX,E~°°) des groupes d'homologie relative réduite à

valeurs en Q.
Comme f est quadratique à l'infini, on a

o

Figure 2

Diagrammes de Morse de £ i-»- — (£4 — £2 + £)

Ep ~ Ep U a\, EZp ^ ETjp U

H,(P,E-°°) ~ H.(E/E-°°) ~ H,(S

Soit r un générateur de Hk^iE.E-00) ~ Q.
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