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that we considered in Sections 2 and 3 above. Similarly, if G is Z/2Z acting
on @ as the antipodal map, then the corresponding extension to P% is given
by complex conjugation.

3. P{ AND THE 4-SPHERE S*

The previous discussion, restricted to n = 2 and compared to the
cohomogeneity 1 isometric action of SO3,R) on S* constructed in [HL],
motivates an equivariant version of the Arnold-Kuiper-Massey theorem [Arl,
Ar2, Ku, Mal], saying that PZ modulo conjugation is the 4-sphere. In this
section we give a new proof of this theorem. We construct an explicit algebraic
map ®: PL — S*, which is equivariant with respect to the cohomogeneity 1
isometric actions of SO(3,R) on P% and S* and induces a diffeomorphism
P% /conjugation = §*.

We start by recalling the SO(3,R)-action on S$*, as explained by Hsiang
and Lawson in [HL; Example 1.4 ].

Let S be the vector space of real 3 x 3, traceless and symmetric matrices.
As a real vector space S is R, and it can be equipped with a metric given by
the inner product (A, B) + trace(AB). Let S® be the space of matrices in S
with norm 1. One has an obvious diffeomorphism $* 22 S® . which becomes
isometric if we endow $* with its usual round metric and S® with the metric
given by the inner product in §. We shall identify these two spaces in the
sequel, denoting both of them by S* indistinctly. The group SO(3,R) acts on
S by A O'AO, where O is the transposed matrix (which is equal, in our
case, to O~!'). This induces an isometric action I' of SO(3,R) on S*. This
action on S* has two disjoint copies of P% as special fibres (see the remark
at the end of this section). The space of orbits is the interval [0, 1], with
the endpoints giving the special orbits. Each principal orbit (i.e. the orbits of
highest dimension) is a flag manifold

F?(2,1) = SOB3,R) / (Z/2Z x 7.)2Z) =~ L(4,1) / (Z/2Z),

of pairs (P,l) with P a plane in R® and [ line in P, where L(4,1) is the
lens space S° /(Z/4Z) = SO3,R) /(Z/27).
Let us give a similar description of P%. Let

53,0 ={HeM3,C)|H=H"}

be the space of complex 3 x 3 Hermitian matrices, where H* = H is the
adjoint matrix of H, obtained by first conjugating each entry of H and then
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transposing the matrix. We equip $(3,C) with the Hermitian inner product
1
3.1) <H1,H2> = 5 trace (H1H>) .

As a vector space, with this inner product, $(3,C) is the ordinary Euclidean
space E°. Consider the subset P(2) of $(3,C) defined by

(3.2) PQ)={He$H3,C)|H*=H and trace(H)=1}.

LEMMA 3.3. The set P(2) is a manifold, diffeomorphic to P%. Moreover,
if we endow P(2) with the metric defined by (3.1), then P(2) is isometric to
P% equipped with the Fubini-Study metric (of constant holomorphic sectional
curvature 4 ).

We remark that it is possible to describe P¢ in a similar way, but we
restrict our attention to n = 2 because this is all we need.

Proof. We claim that if H is in P(2), then it is an orthogonal projection
over a complex line. In fact, if H is in P(2), then it is diagonalizable by a
unitary matrix and its eigenvalues are 0 or 1, because H?> = H. Since the
trace is one, two eigenvalues must be 0 and the other is 1. Hence H 1is a
surjection of C* over a complex line, and this map has to be an orthogonal
projection because H is Hermitian. Conversely, it is clear that each line
L € C? determines a unique orthogonal projection of C?, and this is given
by a matrix in P(2). The diffeomorphism in Lemma 3.3 is achieved by the
map that carries H into the corresponding line in C>. To prove that this map
gives a metric equivalence, we notice that the unitary group U(3) acts on
$H3,C) by H— U*HU, and P(2) is an orbit of this action, with isotropy
(U2) x U(1)). Thus,

P(2) 2 U3)/(UQ2) x U(1)) = P%,

and the metric on P(2) is obviously U(3)-invariant. Hence the induced metric
on P%: is also U(3)-invariant, and this characterizes the Fubini-Study metric,
up to scaling. [J

We recall now that the quotient of P% by the complex conjugation Jjisa
smooth manifold, which is not an obvious fact since j has fixed points. This
is carefully explained in [Mar], so we only sketch a few ideas here. Away
from the fixed point set I1 =2 P%, the involution J 1s free, so the quotient
is a smooth manifold. The problem is on II. A tubular neighbourhood of
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I1 in P% can be regarded as an open disk normal bundle, and conjugation
carries each normal fibre into itself. Since the quotient of each normal 2-disk
by the involution is again a 2-disk, it follows that the quotient P%/j is a
topological manifold. Making this argument more carefully one gets that P2 /j
is in fact a PL-manifold, as noticed in [Ku], and therefore it is smooth,
since every piecewise linear 4-manifold is smooth. In [Mar] Marin defines the
smooth structure on PZ/j directly, without using PL-structures. An important
point is that the smooth structure on P%/j is such that the obvious projection
Pg — Pg/j is differentiable.

Let us denote by I" the aforementioned isometric action of SO(3,R) on S*,
and by I the standard action of SO(3,R) on PZ, which is by isometries with
respect to the Fubini-Study metric. This action is defined either by considering
SO@3,R) as a subgroup of O(3,C), acting on the space of lines in C>, or
via the action of SO(3,R) on the space of matrices P(2) C H(3,C) given by

(0,4) — 0'AO.

By Lemma 3.3, both metrics on P% are equivalent; also for every
O € SOB,R), H € P2) and v € C* such that H(v) = v, one has
O'HO(O'(v)) = O !(v), because O~! = . Hence both actions on
P%; =~ P(2) are equivalent. Similarly, given the SO(3, R)-actions T on P%:
and T on S*, we say that these actions are equivariant if there exists a map
®: P; — S* which makes the following diagram commutative :

SOG3,R) x P2 —— P2

o o

SOGB,R) x s+ — L 4.
In this case we say that @ conjugates the actions I' and . The map @
carries orbits into orbits, i.e. the decompositions of P4 and $* into orbits are
(smoothly) equivalent.

Let us now state the equivariant Arnold-Kuiper-Massey theorem :

THEOREM 3.4. There is a real algebraic equivariant map ®: P& — S*,
which is invariant by the complex conjugation j and induces a diffeomorphism
Ijzc /j = §*, providing a conjugation between the isometric SO(3,R)-actions
I on P4 and T on S*.
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We notice that Theorem 3.4, together with [HL], imply that the image of
P} C P% under the above map is the image of Py by the classical Veronese
embedding (P%, P%) < (Pg,S%).

The proof of Theorem 3.4 follows from several lemmas below.

LEMMA 3.5. Let A be a real (3 x 3)-matrix. Then A is the real part of
a matrix H in P(2) if and only if

1) A is symmetric with trace 1;

ii) A has 0 as an eigenvalue and the other two eigenvalues N\; and \;
are roots of an equation of the form:

N—-A+k=0,

for some constant k € R with 0 <k < }1.

If A and H are as above, and if O € SOB3,R) is such that O'AO is a
diagonal matrix, then the imaginary part B of H, taken into its canonical form
O'BO, has only two possible non-zero entries, which are ++v/k. In particular,
if k=0, then H=A.

Proof. Let us consider a matrix H € P(2) and decompose it into its real
and imaginary parts: H = A+iB. Then one has H = A'—iB’'. Also H=H
because H is Hermitian. Hence A = A’ and B = —B', i.e. A is symmetric
and B i1s anti-symmetric. Thus the trace of A is 1, proving statement (i). One
also has

H* =A”> — B> +i(AB + BA),
and H* = H because H is in P(2). Therefore A = A>—B? and B = AB+BA.
Now, A is symmetric, and so is A% ; these two matrices obviously commute,

so they can be diagonalized simultaneously by a matrix O € SO(3,R). Since
B> = A2 — A, one knows that O'B?0 is also diagonal:

pr 0 0
OB0O=|0 u 0],
0 0 ps

with p; = A2 — )\;, for each i = 1,2,3, where the \; are the eigenvalues
of A. But B is antisymmetric and commutes with B?, which is symmetric.
Hence the same matrix O takes B to its canonical form:

0 a c
OBO=|—-a 0 b
—c —-b 0

for some a,b,c € C. This implies that
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—a® — 2 —bc ab

O'B*0 = (O'BO)(0'BO) = —bc —a% — b2 —ac
ab —ac —b? — ¢?

which we know is a diagonal matrix. Therefore two of the numbers a,b,c
must be zero. Assume for instance that @ and b are 0, then both eigenvalues
A1 and A3 are roots of the polynomial

M —A4+c2=0.
This implies that
)\1+/\3:1 and )\1'/\3—_—C220.

Hence A\, = 0 (because the trace of A is 1), so 0 is an eigenvalue of A.
The other eigenvalues A\; and A; must both be > 0 and < 1, because their
product 1s non-negative and their sum is 1. Moreover the roots must be real,
therefore k = ¢ < %, proving statement (ii).

Also, in this case the eigenvalues of A determine the imaginary part B of

H up to sign:
0
B=40 1| 0

0
0 o',
0

S OO

—C

with ¢ = A\; — A = A3 — A2, proving in this case the last statement of
Lemma 3.5. The other cases, when either a = ¢ = 0 or b = ¢ = 0, are
similar to the previous one. This proves that if A = R(H) for some matrix
H ¢ P(2), then A is as stated in Lemma 3.5. Conversely, given A satisfying
these conditions, the above arguments tell us how to construct B so that these
matrices are the real and imaginary parts of some H in P(2). [

Now, given H € P(2), its real part is R(H) = 3 (H + H). Define
Y: P2Q) > M(3,R),

the space M(3,R) being the space of real (3 x 3)-matrices, by the formula
1
(3.6) Y(H) = 513 — R(H) € M3,R),

where I3 is the (3 x 3)-identity matrix. In other words, ¥ (H) 1s the real part
of the matrix (%13 — H). Since H € P(2), it follows that (H) is actually
contained in S.

It is clear that the above action of SO(3,R) on P(2) given by conjugation is
equivalent, via the above diffeomorphism P(2) = P2, with the standard action
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has
PY(O'HO) = l1 - l(Ot(H +H)0) = (%1 - %(H +H))0 = O'Y(H)O..

Hence we have

LEMMA 3.7. The map 1 is equivariant. That is, for every O € SO(3,‘ R)-

and H € P(2), one has )(O'HO) = O'yY(H)O.

LEMMA 3.8. Given S € S — {0}, there exists a unique positive t € R,
such that the matrix (%I — 1S) is the real part of some matrix H € P(2).

Proof By Lemma 3.7, we may assume that S is diagonal. Hence the
matrix S\t = (%—I — tS) is also diagonal, say

A1(0) 0 0
S=1 0 Mo 0
0 0 @

with \;(¢) = % — tu;, where the p; are the eigenvalues of S. We notice that
for all # € R, one has

trace :S’; =1—t(traceS) =1,

because S has trace 0. Hence all these matrices satisfy condition (i) of
Lemma 3.5.

Let us look for the possible values of ¢ that give solutions of Lemma 3.5.
That is, we want ¢ > 0 for which one eigenvalue A;(r) is O and the others
are such that their sum is 1 and their product is > 0 and < %.

Let us number the eigenvalues of S so that py < py < ps. Since their
sum is O and S is not the zero matrix, one must have p; < 0 and p3-> 0.
If we want ¢ as above, one A;(f) must vanish. Let us look for solutions with

A1(t) = 0. This means that z‘: Ll < 0, and we want ¢t > 0. Hence, there
are no solutions with A\ {(¢) =

Now let us look for solutlons with A\p(f) = 0. This implies that ¢ = 31— X
for this to be possible we must have u, # 0. If up; < 0, then # < 0 and we
want ¢ to be positive. Thus, we only care about p; > 0. We have

(D) = —(1 — =) and M\t = _(1 _ 4
2 )

We have p; < 0 < py, so Ai(1) > 0. If pp < sz, then A3(¢) < 0, thus the
product \;(#)A3(¢) is < 0, so there are no such solutions to Lemma 3.8. The

studied in §2 and §3 above. It is also clear that, for every O € SO@3,R), one .
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other possibility is pp = p3 ; this also implies A3(f) = 0. In this case one has
AM(@®) =1 and (@) = @) =0, and ¢ = ﬁ; is positive. Hence we have a
solution, and this is unique because u, = u3. If up, = 0, then A\(f) cannot
be 0 and we cannot find solutions like this.

-Summarizing, so far we have seen that: i) there are no solutions as in
Lemma 3.8 for which A\(f) = 0; i1) if u, < 0, there are no solutions as in
Lemma 3.8 for which A\;(#) = 0; and ii1) if u; = pus3, then there is a unique
solution as in Lemma 3.8, for which A\(f) = A\3(r) =0 and A\(¢) = 1.

Finally, let us look for solutions with A3(¢) = 0, i.e. with t = 527; We
know, by hypothesis, that p, < ps and p3 > 0. If pup, = u3, then we are
in the previous case and there is a unique positive ¢ giving a solution as in

Lemma 3.8. Let us assume now that p, < pz. Then we have
1 1
MO =21-2) and @ =0-5,
3 3 3 3.

which are both > 0. Since their sum is 1, it follows that each \;(¥) is also
<.

The product of A;(¢) and A(#) satisfies

1
OSAﬂ%M®=-U—M+M ”f%*—@+mm)
H3 H3 13
1
_ _(2+ 112 <

(11 +M2)2) =4

since puy + o + p3 = 0 and (#f‘{‘_‘:fz)z < % because 41‘1(“ + b)? > ab for any
1

real numbers a and b (with equality if and only if a = b). Hence ¢ = s
is the unique solution satisfying the conditions of Lemma 3.8.  []

We now “normalize” the map 1 so that its image is contained in $* C S.
For this we define a function

a(H) = [trace(p(H))] "2 ,
i.e. a(H) is the inverse of the norm of ¥(H) in &, and we set
O(H) = a(H) P(H).
One has
trace[y(H)*] = trace[(% I; — % (H + )]

1 1 1 _ o
= tracel Is — 5 (H + H) + Z(H2 + H + HH + HH)]

1 _
= é + 1 trace(HH + HH) ,
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which is always positive since the matrix (HH+HH) is positive semi-definite,
so its trace is > 0. Hence the maps « and @ are well defined. It is clear
that the image of @ is contained in §* C S, because the linearity of the trace
implies that

[trace(D(H))]* = o*(H) [trace p(H)]* = 1.

It is also clear that @ is SO(3,R)-equivariant, since the trace is invariant
under conjugation and 1 is equivariant by Lemma 3.7. These considerations
imply both Lemma 3.8 and the following

LEMMA 3.9. The map ® is an equivariant surjection from P(2) over
S* C S, and it is two-to-one, except over the image of the real matrices in
P(2) where it is one-to-one.

This gives the map in Theorem 3.4 that determines an equivariant diffeo-
morphism between $* and Pz modulo the involution given by conjugation.
To complete the proof of Theorem 3.4 we need to show that @ is invariant
under the involution of P(2) that corresponds to complex conjugation in P%.
For this we notice that if Ly is the complex line in C* which is the image
of H € P(2), and if 0 # (z1,22,23) € Ly, we can associate to H the point in
P%: with projective coordinates [z1,22,z3]. To the matrix H there corresponds
the line with projective coordinates [Z;,Z»,Zz3]. Therefore we have

LEMMA 3.10. The involution jx of P(2) defined by j*(H) = H coincides
with the involution j of P% given by complex conjugation, [zi,z2,23] EN
[21722723]'

Then @ is invariant under this involution, since R(H) = R(H), proving
Theorem 3.4. []

4. SOME APPLICATIONS AND REMARKS

It is interesting to describe explicitly the orbits of the I’ action of
SO(3,R) on S§*, regarded?) as the set of matrices with norm 1 in S. In
fact, the orbits of this action are conjugacy classes (or congruency classes) of
traceless symmetric matrices whose square has trace 1. This is the connection
between our construction and the spherical Tits buildings. Every S € S can

2) This orbit description of $* is also given in [Ma2].
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