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1. ON THE TOPOLOGY OF A QUADRIC IN P¢

Let O be a codimension 1, non-singular complex quadric in the projective
space P¢.

THEOREM 1.1. The complement of Q in P} is diffeomorphic to the total
space of the tangent bundle of the n-dimensional real projective space:

c\Q=T(Pyg).

Proof. 'We first notice that a non-singular hypersurface of degree d in P
is determined by a homogeneous polynomial of degree d in n+ 1 complex
variables, with no critical points outside 0 € C**!. Let P be the projective
space of coefficients of homogeneous polynomials of degree d in n + 1
complex variables. The general homogeneous equation of degree d in n + 1

variables 1s
(87 o
: : aOé(),-.-,Oé,, ZOO tre Zl’ln -

a(]—}—"'—i—C\C”-:d
This defines a polynomial, and hence a hypersurface X', in P x Pi. The
family of projective hypersurfaces of degree d in P¢ is given by the map

E:X =P,

induced by the projection of P x P¢ onto P. In P, the polynomials defining
singular hypersurfaces in P form a closed subvariety of complex codimension
one. Hence its complement €2 is connected. Since the map & is a locally trivial
fibration over €2, by Ehresmann’s lemma, one knows that any non-singular
hypersurface X C P¢ of degree d is ambient isotopic to the hypersurface
defined by the Fermat polynomial ¥ := z4 + --- + z4. That is, up to
isotopy we can assume that X is the projectivization of the affine variety
V.= {zf—f +o 2= 0} after removing the singular point 0 € V (cf. [LC;
Lemme 2.2]).

The projective space P¢ is obtained dividing C"*!—{0} by the C*-action:

9120, - - - zn) = (€"20,...,€"2,), t€C*=C\{0} .
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Since V is an invariant set for this C*-action, it follows that P{ \ X is the
image of C**!\ V. Moreover, C* is S' x Rt and if we divide C"*!\ {0}
by the R™ -action we get the sphere $?"~!. Thus ¢ \ X is the quotient of
§2r=1\ (VN §2"~1) by the corresponding S'-action. By [Mi2], these S!-orbits
are transversal to the Milnor fibres of the polynomial F%(z) = z2 + - - - + 22,
and their action on the fibres is given by the monodromy, which is cyclic of
period d. Therefore the Milnor fibre F is a d-fold cyclic cover of P{ \ X.

In the quadratic case d = 2, the Milnor fibre is diffeomorphic to the affine
variety Z% + .-+ 72 = 1. Let us decompose each vector Z := (20, - .,2n)
into its real and imaginary parts, Z = U + iV ; then the Milnor fibre is given
as the set (U,V) € R*! x R*™! such that |U]" — |[V|> =1 and U L V.
We notice that the map (U,V) — (U/||U||,V) induces an isomorphism of
this Milnor fibre with the tangent bundle of $”. The monodromy is given
by multiplication by —1, (U,V) — (—=U,—V). The quotient of F by this
involution is, therefore, the tangent bundle of the real projective n-space. [

We notice that part of the argument above is similar to that of Lemmas 2.2
and 2.3 in [LC] (see also Libgober in [Li; Lemma 1.1]), implying Corollary 1.2
below. We denote by Xy the projectivization of the affine hypersurface defined
by the Fermat polynomial ¥7, and by C7 := P{ \ Xy the complement of Xj.

COROLLARY 1.2. Let X be a non-singular hypersurface of P¢ of degree d.
Then :

1) the pair (P¢,X) is isotopic to the pair (P¢,Xo),; and

ii) the Milnor fibre F of ¥7; is a d-fold cyclic cover of CY, the projection
map F — C being given by the monodromy of the Milnor fibration of ¥
(which is cyclic of period d).

Since the Milnor fibre has the homotopy type of a bouquet of u spheres
S", by [Ph, Mi2], one has (as in [Li]) that for n > 1, the fundamental group
m1(CY) is isomorphic to Z/dZ, and m;(C})) = Wf(\/u §"), for j > 1, where
pw=(d— 1" is the Milnor number and \/ , " 1s a bouquet of y spheres
of dimension 7n. In particular:

(1.3) m(CH=0if 1<j<n, and m(Ch)=Z'if j=n.

We now let Q = Q0,1 C P¢ be the non-singular hyperquadric in P¢ with
equation |
2 2 _
g+ +z,=0,
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in homogeneous projective coordinates. Let j: P¢ — P¢ be the involution on
¢ given by complex conjugation: j([zo,-..,z:]) = [Z0,- - -, 2Zul, and let II be
the fixed point set of j, so that Il = Py.

Theorem 1.1 says that P¢ \ Q is diffeomorphic to the tangent bundle
T(I1), and II is the zero section of this bundle. Hence P¢ \ (QUII) can be
regarded as the set of non zero tangent vectors of I, so it is diffeomorphic
to the cylinder T(IT) x (0, 1), where T;(IT) is the unit tangent bundle of Q.
The group SO(n + 1,R) acts linearly on C"*! and this action descends
to an action on P{ which preserves Q. This action also leaves invariant
the real projective space Il, where it acts in the usual way (i.e. via the
action induced from the linear SO(n + 1, R)-action on R**!). This extends,
via the differential, to a transitive action of SO(n + 1,R) on T;(Il), with
isotropy subgroup SO(n — 1,R) x Z/2Z. Hence T,(IT) is diffeomorphic to
SO(n+ 1,R)/(SO(n — 1,R) x Z/2Z). But SO(n+ 1,R) also acts transitively
on Fi+1(2, 1), the (partial) flag manifold of oriented 2-planes in R"™! and
(non-oriented) lines in these planes, with isotropy SO(n — 1,R) x Z/2Z.. Thus
one has diffeomorphisms

Ti(I1) = SO + 1,R)/(SO(n — 1,R) x Z/2Z) = F'(2,1).

The Milnor fibre of the Fermat quadric F4 = 0 in C**! is diffeomorphic to
the total space of the tangent bundle 7'S*. Thus the link K of this singularity
is diffeomorphic to the unit tangent bundle of $". Hence K is diffeomorphic
to the Stiefel manifold V,,;, of orthonormal 2-frames in R, Therefore
Q C P¢, being the projectivization of K, is diffeomorphic to the Grassmannian
G412 of oriented 2-planes in R"™!'. Thus one has a double fibration:

Fir e, n

(1.4) / \

Q Py

where 7 and mm, are the maps that assign to each flag (P,I) either the
2-plane P € G,y or the line [ € Pg.

We form the corresponding double mapping cylinder (F*'(2, 1)x([0, 11)/~,
where ~ 1dentifies a point

((Po, 10),0) € F17(2,1) x {0}
with the point 7(Py,lp) = Py in G, 12 = 0, and a point

(P, 1), 1) € FPF'(2,1) x {1}
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with the point mp(P1,l;) = [, € Pg. The space we obtain is homeomorphic
to Pg¢. Furthermore, the double fibration (1.4) splits into two fibrations,
corresponding to the maps 7 and m,. In the first case the space we get is the
open mapping cylinder of 7, and this is P¢ \IT, while in the second case we
get P¢\ Q, which is the open mapping cylinder of 7. One has the following

THEOREM 1.5. The projective space P is the double mapping cylinder
of the double fibration (1.4). If we remove Q from P{ we obtain a manifold
diffeomorphic to the total space of the normal bundle of 11 = Pk in P¢.
Reciprocally, if we remove 11 from P¢, what we get is diffeomorphic to the
total space of the normal bundle of Q in P{. If we remove QUII from P,
what we get is diffeomorphic to Fﬁ_+1(2, 1) x (0,1), where

F7'(2,1) 2 SO(n + 1,R)/(SO(n — 1, R) x Z/2Z)

is the (partial) flag manifold of oriented 2-planes in R"™ and (non-oriented)
lines in these planes.

Proof. We notice that if we replace in Theorem (1.5) the word diffeo-
morphic by homeomorphic, then this theorem follows immediately from the
previous discussion. Let us prove that we actually have diffeomorphisms. By
Theorem 1.1, this is clear for P¢ \ Q. In fact, the fibration of P\ (Q UTI)
given by the manifolds F’j_+1,(2, 1) corresponds to the fibration on 7(IT) \ IT
given by sphere bundles of radius r > 0, for some metric on T(IT). These
correspond to boundaries of tubular neighbourhoods 7,(II) of IT C P¢. In
particular Pt \ Q is a tubular neighbourhood of II, hence P{ \ Q is diffeo-
morphic to the total space of the normal bundle of IT & P} in P¢. This
bundle is isomorphic to T(II).

Let us prove that P¢ \II is diffeomorphic to the total space of the normal
bundle of Q in P{. We observe that for all » > 0, the interior of Pg \ #,(I)
is diffeomorphic to P\ II. Now we prove that P \IT is actually a tubular
neighbourhood of Q. For this we recall that if N is a Riemannian submanifold
of PL, its normal map Ny is the function that associates, to each normal
vector v of N in P¢, the projection to P¢ (via the exponential map) of the
end-point of v € TP{ (see, for instance [Mil], p.32, or [AG]). Let us denote
by v(Q) the normal bundle of Q in P and consider the normal map

NQI V(Q) — P’é .

We notice that every complex projective line £ in P¢ orthogonal to Q, for
the Fubini-Study metric, is invariant under conjugation, which is an isometry.
So L is defined by equations with real coefficients (cf. §2 below), and it
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is totally geodesic in P%, since it is a complex projective line. Therefore L
intersects T1 transversally in a real projective line. This implies that the normal
map Ny is a diffeomorphism from the open disk bundle in v(Q) of radius
Z into P¢ \ I1. The union of all closed geodesic segments normal to O of
length 7 fill up all of Pg. Thus the distance from a point p € P¢ \ (ITU Q)
to Q is exactly the length of the unique geodesic segment joining p and the
unique point ¢ € Q such that this segment is orthogonal to Q. Hence every
tubular neighbourhood of Q in PZ, of diameter less than 7, is diffeomorphic

to P¢\II. [

We remark that one has a construction for the Milnor fibre F of the Fermat
polynomial ¥4 in the spirit of Theorem (1.5), since F' can be regarded as the
open mapping cylinder of the fibration

Var12 2SO+ 1,R)/SO(n — 1,R) — SO(n + 1,R)/SO(n,R) = 5",

where V,y;, is the aforementioned Stiefel manifold.

2. ON THE GEOMETRY OF Pg¢

We now look more carefully at the decomposition of P{. arising from the
double fibration (1.4). For this, it is convenient to look at two other interesting
foliations that arise naturally from the double fibration (1.4), and from other
considerations too.

The first foliation F; is actually defined on P¢ \ Il and its leaves are the
fibres of 7, which are 2-disks transversal to O, by Theorem 1.5. By construc-
tion, each leaf of J; is transversal to all the manifolds F TI(Z, 1)xt C Pg for
t € (0,1), intersecting each in a copy of Py and approaching IT as ¢ — 1.
Let us construct this foliation in a different way. We endow P with the
Fubini-Study metric. From the proof of Theorem 1.5 we know that the normal
map Ny of Q induces a diffeomorphism between the open disk bundle of
radius 7/2 and P¢\II. The leaves of F; are the images of the normal disks.
Since the conjugation j: P¢ — P¢ 1s an isometry, we have that a projective
line £ in P{ intersects Q at two conjugate points iff it is orthogonal to Q,
and this happens iff £ can be defined by equations with real coefficients. So
we call these CR-lines. If two distinct CR-lines intersect, they do so in a
point in IT = Pg. Also, each CR-line £ meets Il in a real projective line,
which is an equator of L. Since all complex lines in P{. are totally geodesic,
the real projective line £ NII is a geodesic in P¢, at equal distance /2
from both intersection points in £ N Q. This divides £ into two round disks
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