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1. On the topology of a quadric in Pq

Let Q be a codimension 1, non-singular complex quadric in the projective

space Pq.

THEOREM 1.1. The complement of Q in Pnc is diffeomorphic to the total

space of the tangent bundle of the n-dimensional real projective space :

Pnc\Q T(PnR).

Proof We first notice that a non-singular hypersurface of degree d in Pnc

is determined by a homogeneous polynomial of degree d in n + 1 complex

variables, with no critical points outside 0 G Cn+1. Let V be the projective

space of coefficients of homogeneous polynomials of degree d in n + 1

complex variables. The general homogeneous equation of degree d in n + 1

variables is

£ aûo,...,anzZ°.
a04 \-otn—d

This defines a polynomial, and hence a hypersurface X, in V x Pq The

family of projective hypersurfaces of degree d in is given by the map

£:X->P,
induced by the projection of V x Pq onto V. In V, the polynomials defining
singular hypersurfaces in Pnc form a closed subvariety of complex codimension

one. Hence its complement Q is connected. Since the map £ is a locally trivial
fibration over Q, by Ehresmann's lemma, one knows that any non-singular
hypersurface X C Pq of degree d is ambient isotopic to the hypersurface
defined by the Fermât polynomial := Zq + ••• + z%. That is, up to
isotopy we can assume that X is the projectivization of the affine variety
V := {zq + •• • + zi — 0} after removing the singular point 0 G V (cf. [LC;
Lemme 2.2]).

The projective space is obtained dividing Cn+1 -{0} by the C* -action :

9t(zo, ..*iZn) (eltZo, • • •, eltzn), t G C* C \ {0}
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Since V is an invariant set for this C* -action, it follows that Pq\X is the

image of Cn+1 \ V. Moreover, C* is S1 x R+ and if we divide Cn+l \ {0}
by the R+-action we get the sphere S2n~l. Thus Pq\X is the quotient of
S2n~l \ (V P\S2n~l) by the corresponding Sl -action. By [Mi2], these S1 -orbits

are transversal to the Milnor fibres of the polynomial 4^ )- >

and their action on the fibres is given by the monodromy, which is cyclic of
period d. Therefore the Milnor fibre F is a d-fold cyclic cover of Pnc\X.

In the quadratic case d 2, the Milnor fibre is diffeomorphic to the affine

variety z$ + • • • + zl — 1. Let us decompose each vector Z := (zo, • • ,zn)
into its real and imaginary parts, Z U + iV ; then the Milnor fibre is given
as the set (£/, V) G R"+1 x R"+1 such that \U\2 - |V|2 1 and U ± V.
We notice that the map (U, V) (U/\\ U\\, V) induces an isomorphism of
this Milnor fibre with the tangent bundle of Sn. The monodromy is given
by multiplication by —1, (£/, V) ^ (-U, —V). The quotient of F by this

involution is, therefore, the tangent bundle of the real projective n-space.

We notice that part of the argument above is similar to that of Lemmas 2.2

and 2.3 in [LC] (see also Libgober in [Li; Lemma 1.1]), implying Corollary 1.2

below. We denote by Xo the projectivization of the affine hypersurface defined

by the Fermât polynomial FJ, and by Cnd Pq \Xo the complement of Xq

COROLLARY 1.2. Let X be a non-singular hypersurface of Pnc of degree d.
Then :

i) the pair {PnClX) is isotopic to the pair (Pq,Xo); and

ii) the Milnor fibre F of Fd is a d-fold cyclic cover of Cnd, the projection

map F -A Cd being given by the monodromy of the Milnor fibration of ¥d
(which is cyclic of period d).

Since the Milnor fibre has the homotopy type of a bouquet of p spheres

SP, by [Ph, Mi2], one has (as in [Li]) that for n > 1, the fundamental group
7Ti(Cd) is isomorphic to Z/JZ, and nfiCf) f°r 7 > U where

p (d — l)n+1 is the Milnor number and $n is a bouquet of p spheres

of dimension n. In particular:

(1.3) Kj(Cnd) 0 if 1 < j < n f and 7rfiCd) ZM if j — n.

We now let Q Qn-\ C Pq be the non-singular hyperquadric in Pq with
equation

Zq + h zl 0
5
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in homogeneous projective coordinates. Let j: P£ -a Pq be the involution on

Pq given by complex conjugation : y(ko> • • • znJ) • • • ,zn] »
and let n be

the fixed point set of j, so that 11 P^.
Theorem 1.1 says that P^\ Q is diffeomorphic to the tangent bundle

r(H), and n is the zero section of this bundle. Hence Pq\(Q U II) can be

regarded as the set of non zero tangent vectors of II, so it is diffeomorphic
to the cylinder T\ (IT) x (0,1), where 77 (Ü) is the unit tangent bundle of Q.
The group SO(n + 1,R) acts linearly on Cn+1 and this action descends

to an action on which preserves Q. This action also leaves invariant
the real projective space II, where it acts in the usual way (i.e. via the

action induced from the linear SO(n + 1,R)-action on Rn+1). This extends,

via the differential, to a transitive action of SO(n + 1,R) on 7j (Tl), with
isotropy subgroup SO (n — 1,R) x Z/2Z. Hence 77 (IT) is diffeomorphic to

SO(«T- l,R)/(SO(n — 1,R) x Z/2Z). But SO(« + 1,R) also acts transitively
on F^_+1(2,1), the (partial) flag manifold of oriented 2-planes in R"+1 and

(non-oriented) lines in these planes, with isotropy SO (n — 1,R) x Z/2Z. Thus

one has diffeomorphisms

7701) ^ SO(n + l,R)/(SO(n - 1,R) x Z/2Z) ^ Fn+\2,1).

The Milnor fibre of the Fermât quadric 0 in Cn+1 is diffeomorphic to
the total space of the tangent bundle TSn. Thus the link K of this singularity
is diffeomorphic to the unit tangent bundle of Sn. Hence K is diffeomorphic
to the Stiefel manifold Vn+\,2 of orthonormal 2-frames in Rn+1. Therefore
Q C Pq, being the projectivization of K, is diffeomorphic to the Grassmannian

Gn+1,2 of oriented 2-planes in Rn+1. Thus one has a double fibration:

where tti and 7r2 are the maps that assign to each flag (P,Z) either the
2-plane P e Gn+ij2 or the line / G PJ.

We form the corresponding double mapping cylinder (F++1(2, 1)x[0, 1])/~,
where ~ identifies a point

n+1(2,i>

(1.4)

Q

((Po,lo),0) e{0}
with the point ni(P0,l0) Poin G„+1]2 Q, and a point

((Pi,h),1) e f++'(2,1) x {1}



180 LÊ D. T., J. SEADE AND A. VERJOVSKY

with the point 7r2(Pi,/i) l\ G Pr. The space we obtain is homeomorphic
to Pq. Furthermore, the double fibration (1.4) splits into two fibrations,
corresponding to the maps 7Ti and 7r2. In the first case the space we get is the

open mapping cylinder of tt\ and this is P£ \IT, while in the second case we

get Pq\Q, which is the open mapping cylinder of 7r2. One has the following

THEOREM 1.5. The projective space P£ is the double mapping cylinder
of the double fibration (1.4). If we remove Q from P£ we obtain a manifold
diffeomorphic to the total space of the normal bundle of II P^ in Pq.
Reciprocally, if we remove II from Pq, what we get is diffeomorphic to the

total space of the normal bundle of Q in P£. If we remove QUTl from Pf,
what we get is diffeomorphic to PÎJ_+1(2,1) x (0,1), where

Fn+\2,1) S£ SO(rc + l,R)/(SO(n - 1,R) x Z/2Z)

is the (partial) flag manifold of oriented 2-planes in Rn+1 and (non-oriented)
lines in these planes.

Proof We notice that if we replace in Theorem (1.5) the word
diffeomorphic by homeomorphic, then this theorem follows immediately from the

previous discussion. Let us prove that we actually have diffeomorphisms. By
Theorem 1.1, this is clear for Pq\Q. In fact, the fibration of P£ \ (Q U II)
given by the manifolds P^_+1(2,1) corresponds to the fibration on P(II) \ II
given by sphere bundles of radius r > 0, for some metric on P(II). These

correspond to boundaries of tubular neighbourhoods vr(Jl) of II C P^. In
particular P£ \ Q is a tubular neighbourhood of II, hence Pç\Q is

diffeomorphic to the total space of the normal bundle of II P^ in P£. This
bundle is isomorphic to P(II).

Let us prove that P£ \ II is diffeomorphic to the total space of the normal
bundle of Q in Pnc. We observe that for all r > 0, the interior of Pnc \ ur(H)
is diffeomorphic to P£ \Tl. Now we prove that Pf\Tl is actually a tubular

neighbourhood of Q. For this we recall that if N is a Riemannian submanifold

of Pq, its normal map Mn is the function that associates, to each normal

vector v of N in P£, the projection to P£ (via the exponential map) of the

end-point of v G TPnc (see, for instance [Mil], p. 32, or [AG]). Let us denote

by KG) the normal bundle of Q in P£ and consider the normal map

Afa KG) -> Pc -

We notice that every complex projective line C in Pf orthogonal to Q, for
the Fubini-Study metric, is invariant under conjugation, which is an isometry.
So C is defined by equations with real coefficients (cf. §2 below), and it
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is totally geodesic in Pnc, since it is a complex projective line. Therefore £
intersects n transversally in a real projective line. This implies that the normal

maP Nq is a diffeomorphism from the open disk bundle in u(Q) of radius j

§ into Pnc \n. The union of all closed geodesic segments normal to ß of j

length f fill up all of Pnc. Thus the distance from a point p G Pq \ (II U Q)

to Q is exactly the length of the unique geodesic segment joining p and the j

unique point q e Q such that this segment is orthogonal to Q. Hence every

tubular neighbourhood of Q in Pq of diameter less than ~, is diffeomorphic

toP£\n. n I

We remark that one has a construction for the Milnor fibre F of the Fermât j

polynomial Fin the spirit of Theorem (1.5), since F can be regarded as the |

open mapping cylinder of the fibration

Vn+1,2 rn SO (n + 1, R)/ SO (n - 1, R) —> SO (n + 1, R)/ SO(*, R) Sn

where Vn+i52 is the aforementioned Stiefel manifold.

2. On the geometry of Pq

We now look more carefully at the decomposition of Pq arising from the

double fibration (1.4). For this, it is convenient to look at two other interesting
foliations that arise naturally from the double fibration (1.4), and from other

considerations too.

The first foliation T\ is actually defined on Pq\TI and its leaves are the

fibres of tt\ which are 2-disks transversal to Q, by Theorem 1.5. By construction,

each leaf of T\ is transversal to all the manifolds F^_+1(2,1) x t C Pq for
t G (0,1), intersecting each in a copy of and approaching Yl as Ml.
Let us construct this foliation in a different way. We endow Pq with the

Fubini-Study metric. From the proof of Theorem 1.5 we know that the normal

map Mq of Q induces a diffeomorphism between the open disk bundle of
radius 7r/2 and Pq\IT The leaves of T\ are the images of the normal disks.
Since the conjugation j: Pq -» Pq is an isometry, we have that a projective
line £ in Pq intersects Q at two conjugate points iff it is orthogonal to Q, I

and this happens iff C can be defined by equations with real coefficients. So

we call these CR-lines. If two distinct CR-lines intersect, they do so in a j

point in II P^. Also, each CR-line C meets II in a real projective line, |

which is an equator of C. Since all complex lines in Pq are totally geodesic,
the real projective line £ H II is a geodesic in P£, at equal distance 7t/2 j

from both intersection points in £ fl Q. This divides £ into two round disks j
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