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62 P. ETINGOF AND E. STRICKLAND

3.8 THE LEVASSEUR-STAFFORD THEOREM AND ITS GENERALIZATION

Lf:t us now recall a result of Levasseur and Stafford:

THEOREM 3.20 ([LS]). If G is a finite group acting on a finite dimensional

vector space V over the complex numbers, then the ring D(V)C is generated
by the subrings C[V]® and C[V*]°.

As an example, notice that if we let Z/nZ act on the complex line by
multiplication by the n™ roots of 1, we deduce that the operator x% can
be expressed as a non commutative polynomial in the operators x" and (i:,,,
a non-obvious fact. We note also that this theorem has a purely “quantum”
nature, 1.e. the corresponding “classical” statement, saying that the Poisson
algebra C[V x V*1¢ is generated, as a Poisson algebra, by C[V]® and C[V*]°,
is in fact false, already for V= C and G =Z/nZ.

One can prove a similar result for the algebra eH.e. Namely, recall that
the algebra eH.e contains the subalgebras C[h]", and C[H*]".

THEOREM 3.21 ([BEG]). If c is generic then the two subalgebras C[H]V
and C[h*1V generate eH.,e.

Notice that if ¢ = 0, then eHye = D(h)", so Theorem 3.21 reduces to
the Levasseur-Stafford theorem.

REMARK. It is believed that this result holds without the assumption of
generic ¢. Moreover, it is known to be true for all ¢ if W is a Weyl group
not of type E and F, since in this case Wallach proved that the corresponding
classical statement for Poisson algebras holds true. Nevertheless, the genericity
assumption is needed for the proof, because, similarly to the proof of the
Levasseur-Stafford theorem, it is based on the simplicity of H..

3.9 THE ACTION OF THE CHEREDNIK ALGEBRA TO QUASI-INVARIANTS

We now go back to the study of Q,,. Notice that the algebra eH,,e acts on
C[h1%, since e gives the W-equivariant projection of C[h] onto C[h]". It is
clear that this action is by differential operators. For instance, the subalgebra
C[H]" C eH,e acts by multiplication. Also, an element g € C[H*1V C eH,e
acts via the operator q(Dy,,...,D, ). By definition this operator coincides
with L, on C[h]".
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