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Figure 13

Diagrammes de Morse des configurations interdites (I) et (II)

On a ainsi démontré que notre décomposition est admissible. Comme la

courbe legendrienne L dont F est la projection est isotope à {(g, 0,0) G T^R},
F est isotope au front lèvre. Ce front a une seule décomposition admissible,

donc par le théorème de Chekanov-Pushkar, F aussi admet une unique

décomposition admissible.

Remarques.
(1) Le Théorème 3.2 fournit un critère géométrique purement combinatoire

qui permet de déterminer la solution de minimax d'un front d'onde (de type
solution multivoque) de dimension 1 : il suffit pour cela de trouver la seule

décomposition admissible d'une compactification du front. La section associée

à la section à l'infini est alors la section de Chaperon-Sikorav du front
compactifié, ce qui détermine sans ambiguïté le graphe de la solution de

minimax sur le front initial.
(2) Les axiomes qui définissent les décompositions admissibles d'un front

d'onde ont été définis par Chekanov et Pushkar comme généralisation de

la classification des points critiques d'une fonction de Morse en couple de

fonctions critiques liés. En ce sens le Théorème 3.2 est le cas simple dont le
théorème de Chekanov et Pushkar est la généralisation.

Exemple 3.3. D'après l'exemple 3.1, le graphe de la solution de minimax
associée au front montré à la Figure 14 est la section marquée par un trait
plus épais.

3.4 Triangles évanescents

Dans cette section on donne une méthode qui permet de remplacer un
front d'onde de type solution multivoque par un front plus simple du même

type et ayant le même minimax. Cela permet de déterminer le minimax du
front initial en itérant cette méthode un nombre fini de fois.
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Soit {Fr}rG[o5i] une famille à un paramètre de fronts de type solution

multivoque, projection d'une isotopie legendrienne {Lr}rG[0,i].

DÉFINITION. On appelle intersection triple une perestroika de {Fr}rG[o,i]
de type "pyramide" (P), telle que le point triple soit l'intersection de trois
branches de même indice.

Remarque. D'après la définition de décomposition admissible, la seule

perestroika de la famille {/v}rëp,i] qui change de manière non continue

l'unique décomposition admissible du front initial est l'intersection triple
(Figure 15).

Figure 15

Changement de la décomposition admissible en passant par une intersection triple

Considérons maintenant le front F comme la trace d'une courbe T de

R2 7°R, paramétrée par s G R. Soit D T(so) IXu), avec sç, < si,
un point double du front, intersection de deux branches de même indice.

L'ensemble r([so,M[) est un triangle de sommet D s'il a exactement deux

cusps. On note alors 7(D) un tel triangle et, pour e > 0 aussi petit que
l'on veut, F — 7(D) un front de type solution multivoque qui coïncide avec

l'ensemble r(R \ l>o,siD en dehors de la boule £>£>(e) de R2 centrée en D
de rayon e, et qui est le graphe d'une fonction lisse à l'intérieur de cette

boule (cf. Figure 16).
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Figure 16

Le front F — 7(D)

Définition. Un triangle T(D) de sommet D est évanescent s'il existe

un chemin sans intersections triples entre F et F — 7(D) dans l'espace des

solutions multivoques.

Exemple 3.4. Considérons le front de l'exemple 3.3, montré à la

Figure 14. Les triangles 7(P) et 7(Q) sont évanescents, tandis que le triangle

T(R) ne l'est pas (en effet pour l'effacer il faut forcément passer par une

intersection triple au point S).

Soit V {X0,... ,Xn} la décomposition admissible d'une compactification
F d'un front de type solution multivoque F.

THÉORÈME 3.5. Si n > 1, au moins une des courbes Xi, avec i > 0, est

un triangle évanescent.

Démonstration. Considérons le graphe (connexe) associé à la décomposition

admissible de F tt\(L), c'est-à-dire le graphe ayant un sommet pour
chaque courbe Xi G V et une arête entre deux sommets pour chaque point
de saut entre les courbes correspondantes. D'après le théorème de Chekanov-

Pushkar, le nombre #(P) — #(S) est invariant par isotopie legendrienne de

L. Puisque L est isotope à un cercle dont la projection est le front lèvre,
ce nombre est toujours 1 pour les fronts obtenus par compactification d'une
solution multivoque. Or, #(V) étant le nombre de sommets et #(S) le nombre
d'arêtes du graphe, on déduit que ce graphe est un arbre, dont les feuilles11)
sont des triangles. Enfin, il est facile de voir que les triangles qui forment
une courbe Xi eV (i > 0) sont évanescents.

11 Les feuilles d'un arbre sont les sommets dont est issue une seule arête.
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De toute évidence on a le fait suivant.

PROPOSITION 3.6. Si un triangle 7(D) est évanescent, alors les sections
de minimax de F et de F — 7(D) coïncident en dehors de Bp(e).

Remarque. La Proposition 3.6 donne une méthode pour simplifier
récursivement le front d'onde dont on cherche le minimax: on recherche

parmi les triangles du front ceux qui sont évanescents. Après un nombre fini
de pas, on efface tous les cusps du front ; la section restant coïncide, en dehors

d'un nombre fini de boules arbitrairement petites, avec le minimax du front
initial.

Exemple 3.7. Considérons le front générique F de type solution multi-

voque montré à la Figure 17. A côté de chaque branche on a noté son indice.
La solution de minimax est la section mise en évidence.

Pour montrer cela, on applique la Proposition 3.6: les triangles 7(G) et

7(E) sont évanescents (pour le premier c'est clair, pour le deuxième, il faut

remarquer que la branche d'indice —1 de ce triangle peut traverser les points

A, B et C). Donc en dehors de deux boules aussi petites que l'on veut,
centrées en G et en F, les sections de minimax de F et de F — 7(G) — 7(E)
sont les mêmes (voir la Figure 18). Les triangles T(A) et 7(D) du nouveau
front sont de toute évidence évanescents, ce qui prouve que le minimax est

bien celui annoncé.
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Figure 18

Le front F — T(G) — T(E)
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