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ANALYSE DE FOURIER
DES FRACTIONS CONTINUES A QUOTIENTS RESTREINTS

par Martine QUEFFELEC et Olivier RAMARE

ABSTRACT. Let A be a finite alphabet of positive integers with |A| > 2, and
F(A) be the set of numbers in [0, 1) whose partial quotients belong to .A. We construct
a Kaufman measure on every such set with Hausdorff dimension > 1/2 and establish,
in this way, the existence of infinitely many normal numbers in F(A). This improves
previous results of Kaufman and Baker.

1. INTRODUCTION

Il est intéressant de classer les ensembles de mesure de Lebesgue nulle:
on peut considérer leur cardinalité, leur dimension de Hausdorff, ou préciser
le comportement des mesures (singulieres) qu’ils portent.

[.1. On sait que les nombres normaux (en toute base) sont de mesure
pleine pour la mesure de Lebesgue, et Kahane & Salem [9] ont posé la
question suivante: soit p une mesure borélienne sur T identifié a [0, 1), dont
la transformée de Fourier tend vers O a Dinfini (u € My(T)); est-il encore
vral que g -presque tout nombre de [0, 1) est normal en base 2 par exemple ?

Autrement dit, est-ce que I’ensemble des nombres non-normaux en base

2 est annulé par toute mesure de My(T) ? Ou porte-t-il, au contraire, une
mesure de My(T) ?

DEFINITION 1.1.  Un sous-ensemble E C T est dit de multiplicité (stricte)
s’il existe une mesure (de probabilit€) € My(T) telle que w(E) # 0.
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Russell Lyons [11] a montré que I’ensemble W* des nombres non-normaux
en base 2 était de multiplicité en précisant la borne inférieure de la vitesse de
convergence de [i(n) vers O, lorsque p charge positivement W*. La réponse
a la question de Kahane & Salem est donc: non.

1.2. Les nombres a quotients partiels bornés sont de mesure nulle pour
la mesure de Lebesgue.

Pour chaque N > 2, notons F(N) I’ensemble des irrationnels de [0, 1)
dont le développement en fraction continue ne comporte que des entiers
€ {1,...,N}. Cest un compact de type Cantor, de mesure de Lebesgue
nulle. Mais sa dimension de Hausdorff est non nulle et tend vers 1 quand
N — oo. La dimension de Hausdorff de F(2) est de I’ordre de 0,53....

Kaufman [8] sait construire sur tout ensemble F(N) dont la dimension
de Hausdorff est > 2/3 (en fait, dont la dimension de Hausdorff est

> 1_+%/_ﬁ ~ (,64) une mesure de probabilité dont la transformée de Fourier

est en O(ln|™°) od & > 0, quand |n| — oo. Il résulte des encadrements
précis de cette dimension, dus a Hensley [6], que F(/N) est un ensemble de
multiplicité pour N > 3. La question reste alors en suspens pour N = 2.

1.3. 1II n’existe pas de lien entre le développement en base enticre et le
développement en fraction continue d’un nombre réel et on peut se demander
s’il existe des nombres normaux a quotients partiels bornés. Dans son livre
[12], Montgomery rapporte 1’observation faite par Baker a la parution du
résultat de Kaufman, observation que 1’on peut formuler ainsi:

THEOREME 1.2 (Baker). Pour tout N > 3, il existe une infinité de nombres
normaux dans F(N).

Subsiste alors la question de savoir s’il existe un nombre normal appartenant
a F(2) (et méme une infinité).

Par une relecture soigneuse de la construction de Kaufman, nous apportons
une réponse positive a cette derniere question; plus précisément, nous
établissons

THEOREME 1.3. [l existe une infinité de nombres normaux dans F(A)
pour tout ensemble A fini d’entiers > 1 contenant au moins deux éléments
et tel que dimy F(A) > 1/2.
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Ce théoreme est la conséquence facile du théoréme suivant, qui annonce
’existence d’une mesure de Kaufman sur F(A) pour un tel alphabet.

THEOREME 1.4. Soit A un ensemble fini d’entiers > 1. Nous supposons
que A contient au moins deux éléments et que la dimension de Hausdorff de
I’ensemble F(A) est > % Soit € > 0 et —é- < § < dimy F(A). Il existe une
mesure de probabilité p sur F(A) et deux constantes > 0, ci et ¢y, telles
que

e pour tout borélien S, u(S) < cj(diam $) ;

4| < a1+ Jul)7H avee n = 20520

® pour tout u > O, m_—é)

L article est construit comme suit: apres des rappels sur le développement
en fraction continue et les ensembles F(A), nous reprenons en grande partie
la construction de Kaufman en 1’adaptant a notre propos pour établir le
théoréme 1.4, puis nous en déduisons le théoreme 1.3 par une démarche
classique désormais (voir aussi [13],[14]) et qu’utilisait déja Baker [1].

2. LES ENSEMBLES F(A)

Soit N > 2 et A un ensemble fini d’entiers C [1,...,N] contenant au
moins deux éléments.

Nous nous intéressons a I’ensemble F(A) des irrationnels de [0,1) dont
le développement en fraction continue [0;ay,a,,...] est tel que a; € A pour
tout i > 1.

Si x =[0:a1,a,,...] € F(A), notons gjfg =5 = [0a1,a,...,] la
k-ieme réduite de x; nous avons ainsi Pp =0, Qp =1, Py =1 et Q; =q;.

Pour exprimer les P, et O, il est commode d’introduire les matrices de

déterminant —1
0 1
A;(x) = )
) (1 a,-<x>>

) M) 1= Ay(x) . . . A (x) = (P ;;(lg) Qg(lg)> .

Il ressort de ces récurrences que Pi(x) et Or(x) sont en fait des polyndmes

en ai,...,ax, liés par la relation Py_)Qy — Qx_1Pr = (—1)*. Par transposition
dans (1), 1l vient:

Alors
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2) Owlar, .. .,ar) = Orla, - - .,a1),
et

3) Pi(ay,...,ax) = Qr—1(ax,...,a2),
d’ou

@) Qé: _[O:ap....ai].

Cela signifie que deux dénominateurs consécutifs contiennent tout le passé de
la fraction continue.

Les réduites fournissent de bonnes approximations rationnelles de x et
nous retiendrons

k
5) P (—1)

T Or 1Ok + O 1)k

N

ou
X1 = [y 15 Arg2y - - - 1
Enfin remarquons que F(A) admet un plus petit et un plus grand élément:’
le plus petit admet comme fraction continue la suite périodique répétant N,a
ou N est le plus grand élément de A et a est son plus petit élément, alors
que le plus grand lui répete a,N. Il s’agit donc, pour le plus petit élément,
de la solution de

1
N+ —)=1
X +x+a)

2N < 2N
2aN+1 — 2N+1°

qui est > w5 > Nﬂrl alors que le plus grand est <

L’ensemble F(A) peut étre regardé comme sous-ensemble de R, avec
sa topologie et sa mesure, ce que nous nommerons la structure linéaire,
ou bien comme un produit infini AN qui est naturellement muni d’une
structure profinie. Les morphismes qui passent d’une structure a 1’autre sont
respectivement et trivialement 1’application qui & un nombre .associe son
développement en fraction continue et I’application qui a un tel développement
associe un réel... . Ces deux structures se ressemblent beaucoup !

LEMME 2.1. Soit x et y de F(A). Supposons a;,(x) = a;(y) pour i variant
de 1 a k. Alors
‘ N2
x—vy| < —
s e
et si agy1(x) # ar41(y), alors
1

NN + 2)Q41(x)?

x—y| >




FRACTIONS CONTINUES A QUOTIENTS RESTREINTS 339

Démonstration. En effet, puisque Q;(x) = Q;(y) := G, 1 <j<k,par (5),

(=D k1 — Xet1)

B Or10k + Ok—1) k1 Ok + Q1)

xX—=Y

et

en Qs+ Qe < (75 1) (@ (00 + Q) < NV + 20 ()

: alors que d’un autre coté

1
Vit1Qk + Ox—1 2 ) (ar+10)0k + Ok—1) > NQH—I(X) :

Apt1(x
Il nous reste & minorer |yir1 — X¢+1| sous la seule hypothese a1 1(x) # ap+1(y)
(mais aussi 1/x; € F(N)). Le pire qui puisse arriver est que x4 soit le plus
grand possible par rapport & ax41(x), que ax1(y) = arr1(x) + 1 et que yri
soit le plus petit possible. Leur différence serait alors minorée par

| VN2 + 1 V2 >1

N+1 +N+1_N

car 1 — Y >0 6i N> 1, et NV22>N+1 si N> 3. 1l suffit alors de

vérifier I’inégalité pour N =2. []

LEMME 2.2. Soit t et h > 0 des réels. Supposons que h < (N +2)~!.
Alors il existe £ >1 et @y,...,a; des entiers entre 1 et N tels que

t<x<itt+h=a®=a Ge{l,....0}).

De plus Qu(@y,...,a;) > (N+2)"'h=1/2,

Démonstration. La preuve est essentiellement contenue dans le lemme
1 précédent. En effet, comme (k4 est borné, l’existence ne pose pas de
‘ probleme. Il nous suffit alors de prendre ¢ maximal, i.e. tel qu’il existe deux
points x et y avec agii(x) # agyr1(y) et le lemme précédent conclut.  []

Si nous désignons par T le shift unilatéral sur F(A) considéré comme
sous-ensemble de AN, de sorte que Tx :=T[0;a;,a;,...]1 =[0;a,as,...],
la fonction (n,x) — M,(x) est un cobord matriciel pour 7 au sens ou:

My o(x) = Mp(T* )M (x) ,
soit

(P kre—1(0)  Orye—1 (x))

_ [(Pe—1(T*x) Q£—1(Tkx)> <Pk—1(x) Or—1(%)
Pryo(x) Ok+0(x) 7

- ( Po(T*x) Q(T*x) Pi(x) Or(x)
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d’ou I'on tire
Qire(x) = Po(T*0)Qk—1(x) + Qe(T* 1) Q%)
d’ot I’encadrement, puisque P; < (; pour tout j,

©) [ < Ok+-0(x) <5
T Qu(T*x)Q(x) —

En nous souvenant que P;(x) et Q;(x) ne dépendent que des j premiers
quotients partiels de x, nous avons montré

LEMME 2.3. Si tous les a; sont au moins égaux a 1, la différence

Log Qxye(ay, . . ., akve) — Log Oxlay, . . . ,ar) — Log Qu(ak+1, - - -, Qkte)

est en valeur absolue inférieure a Log?2.

3. DIMENSION DE HAUSDORFF

Les ensembles F(A) sont tous de mesure de Lebesgue nulle, mais de
dimension de Hausdorff > 0. Good [4] a montré le résultat suivant:

THEOREME 3.1. Soit A un ensemble fini d’entiers > 0. Soit m > 1. Soit
am, A > 0 la solution en o de

-2
Z Z Qm(al,az,...,am) “=1.
alEA amEA

Alors la limite de o, o4 quand m tend vers 'infini existe et vaut la dimension
de Hausdorff de F(A) muni de la métrique induite par la distance sur R.

L]

En fait, la preuve qui mene a ce résultat est tres instructive. En notant

@)=Y ... > Owlai,a,...,an) """

amEeA an€A

nous constatons en utilisant (6) que %, ¢(a) < 2, (@)Zp(ev). Par ailleurs X, ()
décroit en o et par conséquent, si X, (aq) > 1, alors oy, 4 > . Or

Sala) > N™Hmap e A"

ou F,, est le m-ieme nombre de Fibonacci. Nous souhaitons donc avoir

1
—2(LogN + - Log F,,)a + Log|A| > 0
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ce qui nous garantit que

Log | A]
2(Log N + Log 1—+§£)

Cette minoration nous montre en particulier que cette dimension est strictement
positive.

Notons dans 1’autre sens que d = dimy, F(A) < 1/2 pour certains alphabets
A, par exemple A = {1,4}. Cela résulte de la remarque suivante: s’il existe
des m arbitrairement grands pour lesquels %,(c) < 1, alors o > d; dans le
cas contraire, en effet, puisque lim, o, = d, @ < oy et Zp(a) > Zp(ay,) =1
pour m assez grand. Par ailleurs dés que %,(a) < 1 pour un m fix€, nous
avons Xy,(a) < 1 pour tout k¥ > 1. En prenant m = 6 dans I’exemple
précédent, nous obtenons alors d < 0.492.

4. UNE MESURE SPECIALE

Dans la construction de la mesure qui nous intéresse, nous allons éliminer
du support les points pour lesquels Log O, est trop loin de sa valeur moyenne,
auquel cas les deux structures considérées sur F(A) seront vraiment similaires.

Soit § < dimy, F(A). Le théoreme 3.1 et la définition de la dimension de
Hausdorff nous assurent que

lim %,(0) = lim Z Z Omlai,a, . ..,am) " %° = 4+00;

m— o0 m—o0o
(ZIEA amEA

nous pouvons trouver m assez grand pour que X,(6) > 8. Fixons provisoire-
ment m ainsi et regardons F(A) comme formé a partir des blocs A™.

Nous munissons le bloc A™ de la mesure de probabilité discréte v, = Um,§
définie par

Un({@1, ..., am}) = Om(ar, aa, . . . ,apn) "2 /Z0(5).

Soit alors mo,(d) la moyenne de Log Q,,(ay, as, .. ., a,) pour cette mesure.
Comme

(7)  Log Qu(ai,az,...,am) > LogQu(1,1,...,1) > (m — 1) Log V2

nous avons mo,(8) > (m — 1)Log+/2.
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Notons

Yl — Qm(a17a27' .- 7am)7 Y2 — Qm(am—l-laam—l-Z,- .. ;a2m)7 sex

Les variables (Y;); forment une suite de variables indépendantes équi-
distribuées sur 1’espace Q = (A™N" muni de la mesure de probabilité:
P=v,xv, x..

Par la loi faible des grands nombres, pour € > 0 nous pouvons trouver
Jo = jo(m, ) tel que pour j > jo : |

1 1
P(l]—,(Log Yy +LogY,+---+LogY;) — E(Log Yl). % EE(LOgY1)> > 5

Par conséquent, a 1’aide du lemme 2.3, pour j > jo,

|L0g Qjm(al7a27 S aajm) _Jmam(5)| S €]me(5) + (] - 1)L0g2

.
< (8 +J271—)Jm0m(5)

sur un ensemble E = E(g,jp) de "P—mesure > %; en prenant m > 1/2¢

(ce qui fixe jo en fonction de €) et en posant Jy = jom, nous obtenons sur E
) |Log Oj(ai,az, . ..,a5) — Jou(0)| < 2eJ0,(6)

pour tout J > Jy et divisible par m.

Jo étant fixé, nous regardons cette fois F(A) comme construit autour
des blocs A% . Soit v la mesure de probabilité induite sur E par la mesure
Um X +++ X Up. La mesure p qui convient est x{°v, obtenue en prenant des

Jo
copies de v sur chaque facteur A”.

Puisque Qp(ai,az,...,an) = Ow(am,am—1,...,a1), la mesure discrete
v, est invariante par la transformation (ai,...,an) — (am,...,a1) et par
définition des variables Y;, I’ensemble

1
E={|-(Log¥ +Log¥: + - + Log¥) — E(Log Y1) < eE(Log 1)}
j

est a son tour invariant par la transformation (ai,...,ajm) — (Gjm,...,a1).
I1 ressort alors de la construction que v est invariante par la transformation
(a1,...,a5) = (aj,,...,a1); enfin p est invariante par la transformation
(ay,...,ay) — (ay,...,a;) pour tout J multiple de Jy.

Nous retiendrons en particulier de cette construction:
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PROPOSITION 4.1. Pour tout € > 0 et 1/2 < § < dimy F(A) nous pouvons
trouver m, Jo multiple de m et une mesure de probabilité 1 sur F(A) tels
que :

a) u) <c|l % I intervalle de [0,1), ot ¢ >0
et, pour tout J divisible par Jy,

b) p est invariante par la transformation (ay,...,a;) — (ay,...,a1),

c) Q1% > 0;(x) > Q'7%, Q' > 0, 1(x) > Q'7*/(2N) p-presque
stirement, avec Q = exp(Jo,,(9)).

Des mesures vérifiant la propriété a) se rencontrent souvent en théorie de
la dimension et permettent d’obtenir une borne inférieure pour celle-ci via le
théoreme de Frostman (cf [10]).

Démonstration. 1l reste a établir la propriété a) qui va découler du

lemme 2.2. Soit I = [t,¢t + h]. Quitte a décomposer [ en petits intervalles

disjoints, nous pouvons supposer i < ﬁi?i Par le lemme 2.2, [ est contenu

dans le cylindre s’appuyant sur ap,...,d,, 1 < @ < N, avec de plus
Qe(@y, .. .,dg) > (N +2)~'h=1/2,
Si ’entier p est tel que pJo < £ < (p + 1)Jp,
Qpuy(@1, - -, lpsy) > Ch™!/?

ou C est indépendant de A, et par 1’inégalité (6),
~ o A o -~ -~ ~
Qp]o(ala <. 7apJ0) S 2 Qm(ala <o 7am) T Qm(a()\—l)m+l> v % 7a)\m) )
avec pJy = Am. Nous en déduisons
(9) Qm(ah v >Zlm) o Qm(a()\—l)m—}—ly R >a)\m) Z Cz_Ah_l/z .

Maintenant, en notant C(as,...,04) le cylindre s’appuyant sur o, ..., o4,
nous pouvons majorer

P(C(ay,...,a0) < P(C(@y,...,dy))
= Un(C(a1, - ., @) - - Vn(C@A—1ymt1 - - -y Grm))
= 0@, -, 8m) ™ - Q@ 1 - -5 )2 Ea(6)
< CT2p8y 5y
d’apres I’estimation (9).

Rappelons que v est la mesure de probabilité induite sur E par la mesure:
Un X - XUy et que P(E) > 1/2, oi E ne dépend que des J, premilres

-~

Jo
variables. Il en résulte que
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V(C(Ell, <. 7ZlJ0)) S 2(1/m X X T/@)(C(Ell, <. 751./0));

N

Jo
nous en déduisons que
(C @y, ..., ps)) < Pvm(C@1, - - -5 Gm) -+ Vi C@A=1ymt1 - - - 5 GAm))
< C—2522>\5+pzm(6)—)\h5 )

Pour finir, nous remarquons que 222977 = 2A23+1/j0)  pujs que 220+1/0) <
8 < X,(6) par choix de m. [

5. INTEGRALES OSCILLANTES

Nous établissons trois lemmes sur des intégrales oscillantes. Les deux
premiers portent sur la mesure de Lebesgue alors que le dernier est une idée
originale de Kaufman.

LEMME 5.1. Si f est C* sur [0,1], vérifie |f/(t)] > a et |f"(t)] < b,
alors nous avons

1 b
<-4,
~a a*

1
/ e(F(D)di
0

avec la notation usuelle e(x) = exp(2imx).

Il s’agit 1a d’une version intégrale modifiée du lemme de Kuzmin-Landau,
aussi ce que ’on nomme de facon informelle «le critre de la dérivée
premiere ».

Le second lemme s’applique lorsque f'(f) s’annule dans l’intervalle en
question.

LEMME 5.2. Si f est C* sur [0,1] et f'(t) = (at + B)g(t) oi g vérifie
lg(0)| > a et |g'(®)| < b avec b > a, alors nous avons

1
/ e(F@)dt| < 6
0

a3/2|a|1/2 )

Classiquement, la méthode de la phase stationnaire donnerait une contri-
bution de 1’ordre de 1/+/f"(—B/a), lorsque b/a est de ’ordre de 1, et c’est
bien ce que donne notre lemme. '

Le dernier lemme permet de comparer 1’intégrale d’une fonction par rapport
a deux mesures distinctes.
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LEMME 5.3. Soit F une fonction C' sur [0,1] bornée en valeur absolue
par 1 et telle que |F'(t)| < M. Notons my = fol |F(t)|2dt. Soit ensuite \ une
mesure de probabilité sur [0, 1] et notons par A(u) le maximum des A[t,t-+u]
pour tout t dans [0,1 — u]. Nous avons alors pour tout r > 0

1
/ |F(®)|d\ < 2r + A(r/M)(1 + myMr—3).
0

Démonstration. Recouvrons [0, 1] par au plus M/r intervalles disjoints
de longueur /M. 1l reste au plus un intervalle de plus petite longueur. Soit
N le nombre de ces intervalles sur lesquels sup|F(¢)| > 2r. En utilisant le
théoreme des accroissements finis, nous constatons que |F(f)| > r sur tous
les intervalles considérés. Par conséquent

r
my 2 erM .

Il vient

1
/ F(H)|d\ < 2r + (N + DAG/M)
0

<2r+ Ar/MYA +mpMr=3)y. O

6. ESTIMATION DE LA TRANSFORMEE DE FOURIER

Nous nous occupons ici du comportement asymptotique de

1
) = / e(ut)du(t)
0

pour |u| grand; nous supposerons, sans rectriction, u positif.
Commengons par rappeler que si x = [0;a;,a5,...] et t = T (x) =
[0;a74+1,...]
Py +tP;_,
Qs+ 1054
_ P, (D
Qr  (Qr+10,-1)Q;

Partons donc de J = kJy fixé: par construction, nous pouvons décomposer
notre mesure g sous la forme

[O;ahaZ)"')aJ_'_t] —

=VUX - XVUXU:I= pp X
M K= Pr X
k
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de sorte que

N & Pf(x)‘l‘fPJ—l(x))
Al = /O / e< B D) )

1
=AF@wm,
ou
P;+tP;_,;
1 — ki el 3
o e /e (QJ + tQJ—lu) ap

a laquelle nous nous proposons d’appliquer les lemmes précédents. Puisque
J est fixé, nous avons

1 —LE £
ﬁQ’ 2 < Qo <OV

avec Q = exp(Jon,(9)); mais, comme Q tend vers l’infini avec J, nous

pouvons le choisir au voisinage d’un nombre fix€ a ’avance, a une constante

multiplicative prés (constante comprise entre exp(Jyoo,,(6)) et son inverse).
Nous commencgons par déduire des lemmes 5.1 et 5.2 une estimation de

my = [, |F(0)|dr.

(11) Q'7* < Q; < QM

LEMME 6.1. Si Q*** > u, nous avons

Q1+266 Q55
\/ﬁ + QZ(S )

Démonstration. En développant le carré, nous obtenons

1 1 * *
P;+tPj_y  Pj+1tP;_,
thdt:///e(( - u) dtdpyd

ou Pj,Q7,... sont des variables indépendantes de P;,Qy,... et identique-
ment distribuées. Notre expression se réécrit :

// ((Q_j B _J> ”) /1 e(£(1)) dt dpy dpy

(-1u  (=Du
(O +1Q5-1)0Qy (Q}f +105_)0;

L’argument f(#) de I’exponentielle admet pour dérivée :

1
/ |F(O)dt <y
0

ou I'on a posé

(12) f@ =
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') — _ -
A ((QJ 0L @+ tQ;_1>2> (=1

soit encore
(Qr+ Q5 + Q-1+ Q5 N(Qr— Q7 +1Qy—1 — OF_1))
Qs+ 1Qr 1) (QF + 107 1)
qui pourra s’écrire g(¢)(at + B) avec:
Qr+Q; +1Qs-1+0j_1)

(Q; +1Q;-1)*(Q5 + 105 _,)?
1 1

= O 110 @ 10 O+ 10, XD + 105

Il nous faut aussi calculer

1@y = (—1u,

g() =

1
h
(Qy +10,-1)*(QF +105_ )

g0 =- 0

ol nous avons posé

207 Q5 +1Q;_1) N 2071(Q7 +107_)
(07 +107_)) - (Qr+10-1)

Nous poursuivons I’estimation de

h(t) - QJ—] + Q;_l +

1
(13) / () dt notée KOs, 01,0 05 y)
0

en discutant selon l’existence ou non d’un point stationnaire pour f, 1.e.
d’un point ¢ € [0,1) tel que f'(f) = 0 ce qui impose Q;_; # OF_,, et
t=—(Q;—07)/(Qr-1—0Qj_1) €10,1).

1) Tout d’abord rappelons (voir (4)) que si Oy = Qj_; et Q; = Q7,
a; = a’ pour tout i < J; les points P;/Q; et P;/Q% sont donc confondus, et
k(Qy,05-1,07,0;_;) =1 d’apres (12) et (13). Compte tenu du lemme 2.1 et
du caractere holdérien de p (proposition 4.1 a)), la contribution de ce terme
' dans le calcul de la transformée de Fourier sera au plus

// w(Qr, Qr-1,07,07_1) dpx dpx
{0/=07,0;-1=0; |}

<[5 - T 2+ ]
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2a) Supposons qu’il y ait un point stationnaire (en particulier Qy_; #
Qj_,); alors le lemme 5.2 donne

Q3>+

N[

En effet, avec les notations du lemme 5.2,

(14) k(Qr, Qr-1,07,07_1) <

9] > a= 70775

et
1g'()] < 10Q711 = p;

I’estimation suit en se rappelant que
ol = [Qr1 — @y |u.

'b) Supposons maintenant plus généralement que 1 < |Q]._1 - Qj_ll < Hy
et I(QJ — ON/(Qr_1 — Qj_l)l < 2: si H décrit les entiers de la forme 2%
entre 1 et Hy, cet ensemble est approximativement la réunion sur j des
ensembles |

P < = Q| <Y, 10— 05 <2]0 - 05y

En posant H = 2,

{H/2<|Qro1— Q5| <H, |0/ — Q51 £2]Qs1 — Q54 }
- {H/ZS ‘Q]—l —Qj—l’ SHv ]QJ—Q.H SQ’H} ’

de sorte que

// dpx dpy
(H/2<|Qr-1— 05, |<H, |Q,—05 |<2|Q;1—05_, |}

< // dpy dpx
{H/2<|P,—P}|<H, |Q;—0F|<2H}

en utilisant I’invariance de la mesure p; par la transformation (ay,...,a;) —
(ay,...,a1) (proposition 4.1 b)) ainsi que (2) et (3).

Or les hypotheses H/2 < |P;— Pj| < H, |Q; — Q7| < 2H impliquent
clairement, :
P, Py <'PJ""P}<|+|QJ—Q>JK|P>JK H

0 O~ o 0,0, orE’
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donc, si nous conservons dans ce cas les estimations 14 de s obtenues dans
le cas a) d’existence d’un point stationnaire, nous obtenons une contribution
de 1’ordre de

// &(QJ7QJ—I;Q}k7Q}k;1) dpkdpk
{H/2§|Q1_1~Qj_1|§H, |QJ—Q}k §2|QJ—1—Q;‘_1|}

Q%—i—23€
< / / \ dprdp
vHue JJ 5 -g ‘SH/Q
Q%+23E

VHu

en se souvenant de la propriété holdérienne de p (proposition 4.1 a)).
En sommant sur j, nous trouvons pour 1’ensemble

{1< ‘Qj_l — Q}‘_ll < Hyp, |05 — Q7| < 2iQJ—l - Q7—1|}

une contribution totale d’au plus

<

(H/Q)°

3

=423¢

2 5—1/2
L 2t

c) Si ‘Q_]_l — Q}“_li > Hy cette fois, le méme lemme fournit une
contribution de 1’ordre de
032 /\/Tiou
3a) Si Qj1 #QF et [(Qr—0))/(Q—1 —Q;_)| >2,il 0’y a pas

de point stationnaire et nous sommes dans les conditions d’application du
lemme 5.1 qui nous donne la majoration

Q3+26E
10/ = Q5|+ |Qs—1 = QF_ Du”

En effet il résulte des calculs précédents, en reprenant la minoration de
9@, que

(15) K’(QJ?QJ-l)Q.>}<>Qj;—-1)<<

@1 = 18llg®] > w00, — 05| 1

et en dérivant f/(¢) = (ar + £)g(t) nous déduisons ;
F®) < lallg®] + (ol + |8D|g ®) |

|

Q70 = Qflu+ Q70 — Q5| + |01 — Q5 u |
<O, - Q51+ |Qr1 — Q5 u,

d’ou la majoration annoncée.
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Le cas IQJ 1 — 07 1\ > Hy ayant été pris en compte a I’étape
précédente, il suffit de considérer I’ensemble 1 < [QJ 1 — Q05 1| < Hy,
I(QJ - 0N/(Qr-1 — QJ—1)‘ > 2 et la discussion se poursuit ainsi:

b) Supposons 1 < IQ_]_l — Q’J"_1| < Hy et |Q;— Q3| > 2Hy; la
majoration du lemme 5.1 nous donne une contribution de

Q3+265
ng

c) Supposons |Q; — QF| < 2Hp (ce qui implique 1 < lQ]_l — Q}‘_1] <
Hy); cet ensemble se décrit comme la réunion sur j, avec 1 <2 < Hy, des
ensembles

{|01 = 0| <2, 2 <0, - Q)| <21}

Utilisons alors les estimations (15) de «, établies dans le cas a) sans point
stationnaire, nous obtenons par des arguments similaires

// K;(QJ) QJ—17 Q;) Q;_l) dpkdpk
{1<|Qs—1—0;_,|<H, HL|0,-05|<2H)

Q3+266
< / / dpidpy
{1<|p,—pPr|<H, H<|Q, 0rl<

Q3+266
o dprdpr
——’ <H/Q
Q3—|—268
(H/0) .
En sommant sur j, nous trouvons pour 1’ensemble .

{1<10/-1— Q51| <Ho, |Q/— 051 >2|0s-1 — 0F 4|}
une contribution totale d’au plus
(O3+26e

Il s’agit en fait essentiellement du carré de la quantité¢ précédente. Comme
notre intégrale est inférieure 4 1, nous pouvons négliger ce terme (aux (Q%%¢

pres).
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4) Enfin la derniére contribution qu’il faille ajouter vient du cas Qy_1 =
Q;_, mais Q; # Q3 ; il se traite comme le cas 3) précédent et fournit un
terme majorant du méme ordre de grandeur.

Nous sommes en mesure de terminer la preuve du lemme : le choix optimal
dans I’estimation est donné par Hy = Q; en négligeant la contribution des
cas 3) et 4), cela nous donne

Q1-|—26e Q68

1
mz_—_/o IF(t)]de <N \/ﬁ -+ Q25

comme attendu. L]

Pour estimer [(u) = fol F(t)du(t), nous pouvons maintenant utiliser le
lemme 5.3 avec la fonction F' et la mesure p : par construction, la fonction
de répartition de y est holdérienne d’exposant § et M = 2rQ~>T*€u convient.
Pour tout r > 0 nous obtenons

| W) < 7+ Ar/M)(1 + myMr—>)

Q25—2—|—4€u1—6 Ql—{—265 Qés

+55%)-
Nous choisissons O de fagon a égaliser les deux termes de I’estimation de
my, ce qui revient a prendre Q7% de I’ordre de u; comme nous I’avons
remarqué en effet, nous pouvons, u étant fixé, choisir J = kJp suffisamment

grand, i.e. k suffisamment grand, pour rendre Q proche de u™% il suffit de
prendre

<L 4+ r5Q26u—6 +

_ logu
LR +46)0,J0

pour avoir
Q2+45 — (omk])(24-46) <u< Q2+45e(amfo)(2+45) _

I1 en résulte

(16)  |a@)| < r4 rou®/0+20y =0 4 ,8/(+28),1-6 ,6-3 ) (=6+13e)/(1+26)
2
(17) & 74 POy 20420 L (6-287+15)/(1428) .63
Il reste a optimiser en r < 1. Choisissons-le de facon a égaliser les deux.
termes extrémes qui sont dominants. En ignorant ¢, cela revient 4 prendre r

tel que
2
r— p9—3,(6-26%/(1+26)

ou encore
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§ —26°
(4 —0)(1+2))
ce qui est licite si I’on suppose § > 1/2. En reportant dans (17), il vient

r=u" avec n=

2
)] <€ U 4 5T/ E=DAH2] o 152/(1428) o yn8e
car le second terme est négligeable.

Nous avons ainsi établi le théoreme 1.4.

7. UNE QUESTION DE MONTGOMERY
Montgomery a posé dans [12] la question suivante (probleme 45):
Existe-t-il un nombre normal a quotients partiels bornés ?

DEFINITION 7.1. Un nombre x € [0,1) est normal en base g oll g est
un entier g > 2 si et seulement si la suite (¢"x) est équirépartiec modulo 1,
ce qui, via le critere de Weyl, s’écrit:

.1 fos
Vk#0, 11}511N};ve(kq x)=0.

Le théoreme de Borel €tablit que si g > 2, presque tout nombre (au sens
de la mesure de Lebesgue) est normal en base g. C’est le théoreme ergodique
appliqué a la transformation x € [0,1) — gx mod 1. Qu’en est-il en restriction
a un sous-ensemble de nombres irrationnels de [0, 1) ? Un outil est le suivant:

THEOREME 7.2 (Davenport-Erdés-LeVeque). Soit (s,) une suite d’entiers
et soit . une mesure de probabilité portée par [0,1) telle que

N
Z % Z ﬂ(k(sn - Sm)) < 00,
1

N>1 m,n=
pour tout entier k # 0, alors pour p-presque tout x € [0,1), la suite (s,x)
est équirépartie modulo 1.

Démonstration. Fixons k # 0. Notons Syi(x) = 5>,y elks.x), et
Iy = f |SN,k(x)|2d,u(x). L’hypothese n’est autre que

Vi .
Z]i\;ﬁ<+oo, Vk+£0.

N>1
Nous utilisons un lemme classique sur les séries:
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LEMME 7.3. Soit (x,) une suite de réels > 0 telle que ), q%n/n < 00.
Alors il existe une suite d’entiers (N,) telle que:

a) ». xy, < 00;
b) lim, N,.1/N, = 1.

Nous omettons provisoirement 1’indice k et nous appliquons le lemme a
la suite (Iy). Il existe une suite (N,) telle que

ZIN,. = /Z S, () P dpu(x) < .

En particulier, ) |SN,,(x)|2 < 0o p-presque partout et Sy (x) — 0 p-presque
partout. Maintenant nous interpolons:

Si N, < N < N,iq, on a: NSy — NSy, = ZNr<n<N e(ks,x) et
INSy — N:eSN, | < 3oy <nen 1 =N = Ny < Npyy — N, de sorte que

N,
1= N, et [Sv@)] < Sy, ()] + +}V

Par la propriété b) du lemme, Sy(x) tend vers O pour p-presque tout x,
ce qui prouve l’équirépartition modulo 1 de la suite (s,x) pour p-presque
tout x. [

COROLLAIRE 7.4. Soit X un ensemble de réels portant une mesure de
probabilité | telle que [(n) = 0(|n|_5) ou 6 > 0.

Alors, pour toute suite (s,) Strictement croissante d’entiers, la suite (s,x)
est équirépartie modulo 1 pour p-presque tout x € X.

Démonstration. 1l suffit de vérifier les hypothéses du théoreme 7.2 avec
s, et u la mesure portée par X. Or si k #0,

N
o k(s —sa) =N+ > filkisy — sw))
m,n=1 m,n<N, m#n
SN+C > [ksy—sw)|~°
m,n<N, m#n
N m-—1
SN+2C) ) sn —sa)l .
m=2 n=1
Lorsquem>n Sm = Sn = Sm — Sm—1+ Sm—1— "+ Sp41 — S, > m—n, et
N m-—1

Z | k(s — sm))| < N +2C Z Z(m —n)” 9. ; maintenant,

m,n=1 m=2 n=1
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N m—1 N m—1
D22 m=mT =3 %
m=2 n=1 m=2 n=1

N—1
<NY nf=oW*?).
n=1
Finalement -, ¥ Efx,n:l | k(s — sm))| < 0o puisque § > 0.
Nous en déduisons le résultat suivant qui contient celui de Baker:

COROLLAIRE 7.5. Soit A un ensemble fini d’entiers > 1 contenant au

moins deux éléments; il existe une infinit¢ de x € F(A) normal en toute base
des que la dimension de Hausdorff de F(A) est > 1/2.

Démonstration. Soit 1/2 < § < dimy F(A), 0 < & < g5325555

entier > 2. Il résulte du corollaire 7.4 appliqué avec s, = ¢" et u = pgs
la mesure de Kaufman portée par F(.A), donnée par le théoréme 1.4, que
I’ensemble

et g un

N,={x¢€ F(A) normal en base q}

est de mesure pleine pour la mesure de probabilité p. Ainsi u( () N,) =1
922

d’ot le corollaire. []

8. COMMENTAIRES ET QUESTIONS

Les mesures de Kaufman ainsi construites possédent deux propriétés
importantes : le comportement holdérien de la fonction de répartition et le
comportement asymptotique précis de la transformée de Fourier. En fait la
seconde propriété, fondamentale ici, découle en partie de la premiere, mais
le comportement holdérien joue un rdle primordial dans I’approche de la
conjecture de Littlewood par Pollington & Velani [14].

Les ensembles F(A), | A] > 2, sont donc des ensembles de multiplicité
stricte, lorsqu’ils possédent une dimension de Hausdorff > 1/2. On peut se
demander si la borne 1/2 est infranchissable ou si elle reléve au contraire
de la construction. La propriété pour un ensemble d’€tre de multiplicit€ peut
paraitre stable: un résultat fameux de Salem & Zygmund (voir [10]) établit,
pour des ensembles de type Cantor a rapport de dissection &, 1’équivalence:

' 1
E est de multiplicité <= - ¢ S

£
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otl S est I’ensemble des nombres de Pisot. L’ensemble S étant fermé, la
propriété est stable pour les petites variations de &. Qu’en est-il pour les
ensembles du type F(A) ? Ceci améne naturellement les questions:

QUESTIONS. Soit A un ensemble fini d’entiers > 1 tel que |A| > 2 et
dimh F (A) =d.

1. F(A) est-il encore de multiplicit€ ?

2. F(A) porte-t-il une mesure dont la décroissance a l'infini est en
O(1/(og|n|)°) pour un § > 17?

Le lien entre la dimension de Hausdorff et la propriété de multiplicité
n’est pas clairement établie puisque des ensembles de dimension de Hausdorff
positive, tel ’ensemble triadique de Cantor, sont annulés par toute mesure de
M, ([10]) tandis que certains autres, de dimension nulle, sont de multiplicit,
ce qui est assez frappant ([2], [3]).
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