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ANALYSE DE FOURIER

DES FRACTIONS CONTINUES À QUOTIENTS RESTREINTS

par Martine Queffélec et Olivier Ramare

Abstract. Let A be a finite alphabet of positive integers with \A\ > 2, and

F(A) be the set of numbers in [0,1) whose partial quotients belong to A. We construct
a Kaufman measure on every such set with Hausdorff dimension >1/2 and establish,
in this way, the existence of infinitely many normal numbers in F(A). This improves
previous results of Kaufman and Baker.

1. Introduction

Il est intéressant de classer les ensembles de mesure de Lebesgue nulle:
on peut considérer leur cardinalité, leur dimension de Hausdorff, ou préciser
le comportement des mesures (singulières) qu'ils portent.

1.1. On sait que les nombres normaux (en toute base) sont de mesure
pleine pour la mesure de Lebesgue, et Kahane & Salem [9] ont posé la
question suivante: soit p une mesure borélienne sur T identifié à [0,1), dont
la transformée de Fourier tend vers 0 à l'infini (p G M0(T)) ; est-il encore
vrai que ^-presque tout nombre de [0,1) est normal en base 2 par exemple?

Autrement dit, est-ce que l'ensemble des nombres non-normaux en base
2 est annulé par toute mesure de M0(T) Ou porte-t-il, au contraire, une
mesure de Mo(T)

Définition 1.1. Un sous-ensemble E c T est dit de multiplicité (stricte)
s'il existe une mesure (de probabilité) G M0(T) telle que p(E) / 0.
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Russell Lyons [11] a montré que l'ensemble W* des nombres non-normaux
en base 2 était de multiplicité en précisant la borne inférieure de la vitesse de

convergence de fi(n) vers 0, lorsque p charge positivement W*. La réponse
à la question de Kahane & Salem est donc : non.

1.2. Les nombres à quotients partiels bornés sont de mesure nulle pour
la mesure de Lebesgue.

Pour chaque N > 2, notons F(N) l'ensemble des irrationnels de [0,1)
dont le développement en fraction continue ne comporte que des entiers

E {1 C'est un compact de type Cantor, de mesure de Lebesgue
nulle. Mais sa dimension de Hausdorff est non nulle et tend vers 1 quand
N —>• oo. La dimension de Hausdorff de F(2) est de l'ordre de 0,53

Kaufman [8] sait construire sur tout ensemble F(N) dont la dimension
de Hausdorff est > 2/3 (en fait, dont la dimension de Hausdorff est

> i+^n ~ o, 64) une mesure de probabilité dont la transformée de Fourier

est en 0(\n\~ô) où 8 > 0, quand \n\ —oo. Il résulte des encadrements

précis de cette dimension, dus à Hensley [6], que F(N) est un ensemble de

multiplicité pour N > 3. La question reste alors en suspens pour N 2.

1.3. Il n'existe pas de lien entre le développement en base entière et le

développement en fraction continue d'un nombre réel et on peut se demander

s'il existe des nombres normaux à quotients partiels bornés. Dans son livre
[12], Montgomery rapporte l'observation faite par Baker à la parution du

résultat de Kaufman, observation que l'on peut formuler ainsi:

THÉORÈME 1.2 (Baker). Pour tout N > 3, il existe une infinité de nombres

normaux dans F(N).

Subsiste alors la question de savoir s'il existe un nombre normal appartenant
à F(2) (et même une infinité).

Par une relecture soigneuse de la construction de Kaufman, nous apportons

une réponse positive à cette dernière question ; plus précisément, nous
établissons

THÉORÈME 1.3. Il existe une infinité de nombres normaux dans F(A)
pour tout ensemble A fini d'entiers > 1 contenant au moins deux éléments

et tel que àim\iF{A) >1/2.
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Ce théorème est la conséquence facile du théorème suivant, qui annonce

l'existence d'une mesure de Kaufman sur F(A) pour un tel alphabet.

THÉORÈME 1.4. Soit A un ensemble fini d'entiers > 1. Nous supposons

que A contient au moins deux éléments et que la dimension de Hausdorff de

l'ensemble F(A) est > \. Soit e>0 et \ < 5 < dimhF(A). Il existe une

mesure de probabilité p sur F(A) et deux constantes > 0, C\ et C2, telles

que

• pour tout borélien S, p(S) < ci(diamS)'5 ;

• pour tout u > 0, | fi(u)\ < c2( 1 + \u\)v+S£ avec rj (2<f+i)(a-ô) •

L'article est construit comme suit: après des rappels sur le développement

en fraction continue et les ensembles F(A), nous reprenons en grande partie
la construction de Kaufman en l'adaptant à notre propos pour établir le

théorème 1.4, puis nous en déduisons le théorème 1.3 par une démarche

classique désormais (voir aussi [13],[14]) et qu'utilisait déjà Baker [1].

Soit N > 2 et A un ensemble fini d'entiers c [1,...,A] contenant au

moins deux éléments.

Nous nous intéressons à l'ensemble F(A) des irrationnels de [0,1) dont
le développement en fraction continue [0;ai,<22,... ] est tel que at G A pour
tout i > 1.

Si x [0; ai,e2,...] e F(A), notons ^ := g- - [0;ax,a2, ...tak] la
£-ième réduite de x ; nous avons ainsi P0 0, Qo 1, Pi 1 et Q\= a\.
Pour exprimer les Pk et Qk, il est commode d'introduire les matrices de

déterminant —1

2. Les ensembles F(A)

Alors

(1)

Il ressort de ces récurrences que Pk(x) et Qk(x) sont en fait des polynômes
en au... ,ak,liés par la relation Pk~\Qk-Q-(-1)^. Par transposition
dans (1), il vient:
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(A) Qk(ß 1 • • • 5 &k) Qkißki • • • 5 ^l)
et

(3) at) Qk-\(ak, ..mû2)j
d'où

(4) =; [0;afc,
Qk

Cela signifie que deux dénominateurs consécutifs contiennent tout le passé de

la fraction continue.

Les réduites fournissent de bonnes approximations rationnelles de x et

nous retiendrons

(-1)*
(5) x

Qk 1 Qk + Qk-1 Qk

où

^+i [<Zfc+i; 0h-2> • • • ] •

Enfin remarquons que F(A) admet un plus petit et un plus grand élément :

le plus petit admet comme fraction continue la suite périodique répétant N: a

où N est le plus grand élément de A et a est son plus petit élément, alors

que le plus grand lui répète a,N. Il s'agit donc, pour le plus petit élément,
de la solution de

x(N H T-) 215 1

x + a

qui est > alors que le plus grand est < ^ W+i
L'ensemble F(A) peut être regardé comme sous-ensemble de R, avec

sa topologie et sa mesure, ce que nous nommerons la structure linéaire,

ou bien comme un produit infini ^4N qui est naturellement muni d'une

structure profinie. Les morphismes qui passent d'une structure à l'autre sont

respectivement et trivialement l'application qui à un nombre »associe son

développement en fraction continue et l'application qui à un tel développement
associe un réel.... Ces deux structures se ressemblent beaucoup

LEMME 2.1. Soit x et y de F(A). Supposons az(x) afy) pour i variant
de 1 à k. Alors

N2

et si ak+ i(x) / ak+\(y), alors
1

\x~y\> N(N + 2)Qk+l(x),2
'
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Démonstration. En effet, puisque Q/(x)— Qj(y) >
1 <7 < Par (5)>

_ _
(—i)^(yfe+i -Xk+i)

^ (**+iß* + Ô^-iXji+iôfc + Qk-x)

et

Ä+iß* + Qk-1 < + l) Kn«ß* + Ôn) <

alors que d'un autre côté

yk+lQk + Qk— 1 > ~ ^ 1 Môfc + ôfc-l) > —Qk+l(x) •

Il nous reste à minorer [y^+i — *fc+i1 sous la seule hypothèse ak+i(x) ^ a&+i(y)

(mais aussi 1/j% G F(iV)). Le pire qui puisse arriver est que xk+\ soit le plus

grand possible par rapport à ak+ i(x), que ak+\(y) ak+\(x) + 1 et que yk+\
soit le plus petit possible. Leur différence serait alors minorée par

VN2+ 1 y/2 ^
1

N+ 1 N + 1 - N

car 1 - >0 si N > 1, et Ny/2 > N + 1 si TV > 3. Il suffit alors de

vérifier l'inégalité pour N — 2.

LEMME 2.2. Soit t et h > 0 des réels. Supposons que h < (N + 2)_1.

Alors il existe t > 1 fq,..., an des entiers entre 1 et N tels que

t <x < t + h => cii{x) — ai (i e {1 ,...,£}).
De plus Quiai, *.. ,ät) > (N + 2)~lh~1/2.

Démonstration. La preuve est essentiellement contenue dans le lemme

précédent. En effet, comme Qk+1 est borné, l'existence ne pose pas de

problème. Il nous suffit alors de prendre t maximal, i.e. tel qu'il existe deux

points x et y avec at+\{x) ^ a^+i(y) et le lemme précédent conclut.

Si nous désignons par T le shift unilatéral sur F(A) considéré comme
sous-ensemble de AN*, de sorte que Tx := T[0; a\, a2>... ] [0; «2? a3> • • • ] »

la fonction (n,x) Mn(x) est un cobord matriciel pour T au sens où:

Mk..,(.<•)- Me(,soit

JVm-IW ß*+i-iW\ „ pVi(r**) ßfc_i(x)\
/>*+«(*) Qk+dx))\ Pe(Tkx)J Pt(jc) Qk(x) '
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d'où l'on tire

Qk+e(x)Pt(A)ÔnW +

d'où l'encadrement, puisque Pj< Qj pour tout j,

(6) 1 < — Qk+e(x)—^ 2
Qi(Tkx)Qk(x)

En nous souvenant que Pfix) et Qfix) ne dépendent que des j premiers
quotients partiels de x, nous avons montré

LEMME 2.3. Si tous les ^ sont au moins égaux à 1, la différence

Log Qk+e(ai,..., ak+i) - Log Qk{ax ,...,ak)- Log Qt(ak+1,..., a*+*)

est en valeur absolue inférieure à Log 2.

3. Dimension de Hausdorff

Les ensembles F(A) sont tous de mesure de Lebesgue nulle, mais de

dimension de Hausdorff > 0. Good [4] a montré le résultat suivant :

THÉORÈME 3.1. Soit A un ensemble fini d'entiers > 0. Soit m > 1. Soit

&m,A > 0 la solution en a de

S2 53 ' °• ' a">)~2a -1 •

aieA ameA

Alors la limite de am^ quand m tend vers l'infini existe et vaut la dimension
de Hausdorff de F{A) muni de la métrique induite par la distance sur R.

En fait, la preuve qui mène à ce résultat est très instructive. En notant

^ ^ ^ ^ Qm(ß 17 ^21 - ' ' t &m)

a\eA ameA

nous constatons en utilisant (6) que < Em(a)E^(a). Par ailleurs Xm(a)
décroît en a et par conséquent, si Xm(cu) > 1, alors > ai. Or

Zm(a) > ^V-2maF-2a|^r

où Fm est le ra-ième nombre de Fibonacci. Nous souhaitons donc avoir

-2(LogN + — Log Fm)a + Log \A\ > 0
m
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ce qui nous garantit que

v Log 1^1
dimh F(A) > r^TT •

2(LogjV + Log^)
Cette minoration nous montre en particulier que cette dimension est strictement

positive.
Notons dans l'autre sens que d dimhFÉA) <1/2 pour certains alphabets

A, par exemple A {1,4}. Cela résulte de la remarque suivante: s'il existe

des m arbitrairement grands pour lesquels Itn(a) < 1, alors a > d; dans le

cas contraire, en effet, puisque limm am d, a < am et Xm(a) > lLm(am) 1

pour m assez grand. Par ailleurs dès que Zm(a) < 1 pour un m ûxé, nous

avons < 1 pour tout k > 1. En prenant m 6 dans l'exemple
précédent, nous obtenons alors d < 0.492.

4. Une mesure spéciale

Dans la construction de la mesure qui nous intéresse, nous allons éliminer
du support les points pour lesquels Log Qm est trop loin de sa valeur moyenne,
auquel cas les deux structures considérées sur F(A) seront vraiment similaires.

Soit ö < dim^F(A). Le théorème 3.1 et la définition de la dimension de

Hausdorff nous assurent que

lim Lm(<5) lim V" • • • V" +00 ;
m—>00 m-A-OO z' z z

Ü\EA a,n£A

nous pouvons trouver m assez grand pour que 1^(6) > 8. Fixons provisoirement

m ainsi et regardons F(A) comme formé à partir des blocs Am.

Nous munissons le bloc Am de la mesure de probabilité discrète vm vm^
définie par

5 • • • i ^rajO Qmißl i • • • •>
^-m) /Lm((5)

Soit alors mam(ô) la moyenne de Log Qm(aua2i..., am) pour cette mesure.
Comme

(7) LogQm(aua2, ,am)>LogQm(\.: 1,..., 1) > (m - l)LogV2

nous avons mam(5) > (m — 1 Log \/2-
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Notons

Y\ Qmiß 11 Q>2i • • • 5 &m) 5 ^2 — ôm(^m+l 5 ^m+2? • • • 5
^2m)

5 • • • •

Les variables (Y/)y forment une suite de variables indépendantes équi-
distribuées sur l'espace Q (^4m)N* muni de la mesure de probabilité:
JE* — vm x um x

Par la loi faible des grands nombres, pour e > 0 nous pouvons trouver

h =jo(m,£) tel que pour j > j0 :

p(| y(Log Yi+ Log Y2-\h Log Yj)-E(Log | < £E(Log

Par conséquent, à l'aide du lemme 2.3, pour j >7o,

|Log Qjm(fl\,«2, • • •, ajm) - jrnam(ô)|< £jmam(ô) + 1)Log 2

< {£ + jm<Jm(S)

sur un ensemble EE(e,jo) de P-mesure > ; en prenant m > 1 /2e
(ce qui fixe jo en fonction de s) et en posant Jo — jom, nous obtenons sur E

(8) |LogQj(ai ,a2Jam(ô)\<

pour tout J > Jo et divisible par m.
Jo étant fixé, nous regardons cette fois F(A) comme construit autour

des blocs AJ°. Soit v la mesure de probabilité induite sur E par la mesure

vm x • • • x vm. La mesure li qui convient est x ?° v, obtenue en prenant des
y >

jo

copies de v sur chaque facteur AJ°.

Puisque Qm(a\, <22,..,, am) — Qm(ami am-\ 5,.., a{)f la mesure discrète

vm est invariante par la transformation (ai,...,am) (am,...,ai) et par
définition des variables Yj, l'ensemble

E{I j(Log Fi + Log F2 + • • + Log Yj)- E(Log | < eE(Log Yß}

est à son tour invariant par la transformation (01,... ,a/m) (,ajm,... ,a\).
Il ressort alors de la construction que v est invariante par la transformation

(ai, • • •,aj0) —> (a/0,..., a\) ; enfin /z est invariante par la transformation

(a\,... p a/) —> (a/,..., ai) pour tout J multiple de Jq

Nous retiendrons en particulier de cette construction:
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Proposition 4.1. Pour tout e > 0 et 1/2 < S < dimhFVl) nous pouvons
trouver m, Jq multiple de m et une mesure de probabilité p sur F{A) tels

que :

a) pif) < c\lf, I intervalle de [0,1), où c > 0

et, pour tout J divisible par Jq,

b) p est invariante par la transformation (ai,... a/) —> (a/,...,ai),
c) ö1+2e > Qj(x) > Ql-2£, Ql+2£ > Qj-iix) > Ql~2£/(2N) p-presque

sûrement, avec Q exp(7crm(5)).

Des mesures vérifiant la propriété a) se rencontrent souvent en théorie de

la dimension et permettent d'obtenir une borne inférieure pour celle-ci via le

théorème de Frostman (cf [10]).

Démonstration. Il reste à établir la propriété a) qui va découler du

lemme 2.2. Soit I [t, t + h]. Quitte à décomposer I en petits intervalles

disjoints, nous pouvons supposer h < ^p2. Par le lemme 2.2, / est contenu
dans le cylindre s'appuyant sur ai,...,a^, 1 < àj < N, avec de plus
Qe(à\, > (N + 2)-1/z-1/2.

Si l'entier p est tel que pJo < t < (p + 1)70,

Qpj0(ài,...,âpJa)>Ch~l/2

où C est indépendant de h, et par l'inégalité (6),

QpJo&U • * * 5 Opjf) ^ 2 Qmiß-l•> • ' • i O-m) * * * Qrn(ß{\ — l)m-fh • • • 5 d\m) j

avec pJo Xm. Nous en déduisons

(9) QmiPlf • • • àm) • • • Qm(fl(\— 1 )/;?.—J— 15 • • • 5 él\m) ^ C2 H ^

Maintenant, en notant C(ai,..., a*) le cylindre s'appuyant sur ai,..., otk,
nous pouvons majorer

P(C(ai,..., at)) < P(C(ai,..., aph))

vm(.C(ai,..., am)) • • • z/m(C(a(A-i)m+i • • • b\m))

Qmißl 5 • • • ^m) ' ' " Qm{d(\— l)m+l 5 • • • 1 d\m) ^Xm(ù) X

< C~2ô22X6hô'Zm(8)~x

d'après l'estimation (9).

Rappelons que v est la mesure de probabilité induite sur E par la mesure :

Ym x • • • x et que P(£") > 1/2, où E ne dépend que des Jq premières
jo

variables. Il en résulte que
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v{C{âi,... âj0)) < 2jvm x • • • x vm)(C{à15..., àjJ) ;

nous en déduisons que

• • • 5 ÙpjQ)) — 2Pvm(C(ßIi - • • 5 ^m)) ' ' ' ^m(C(^(À —l)m+l • • • ^Àra))

Pour finir, nous remarquons que 22XÔ+P 2A(2<5+1/^o), puis que 2(2<5+1^o) <
8 < Ew((5) par choix de m.

Nous établissons trois lemmes sur des intégrales oscillantes. Les deux

premiers portent sur la mesure de Lebesgue alors que le dernier est une idée

originale de Kaufman.

LEMME 5.1. Si f est C2 sur [0,1], vérifie > a et \f"(t)\ < b,
alors nous avons

avec la notation usuelle e(x) exp(2fo;).

Il s'agit là d'une version intégrale modifiée du lemme de Kuzmin-Landau,
aussi ce que l'on nomme de façon informelle «le critère de la dérivée

première».
Le second lemme s'applique lorsque fit) s'annule dans l'intervalle en

question.

LEMME 5.2. Si f est C2 sur [0,1] et fit) (at + ß)g(t) où g vérifie
\git)\ > a et \g'{t)\ < b avec b > a, alors nous avons

Classiquement, la méthode de la phase stationnaire donnerait une contribution

de l'ordre de 1 /^/f"i~ß/a), lorsque b/a est de l'ordre de 1, et c'est
bien ce que donne notre lemme.

Le dernier lemme permet de comparer l'intégrale d'une fonction par rapport
à deux mesures distinctes.

< C~2522X5+pI.m(Srxhö.

5. Intégrales oscillantes
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LEMME 5.3. Soit F une fonction C1 sur [0,1] bornée en valeur absolue

par 1 et telle que |E7(Y)| < M. Notons m2 /q \F(t)\2dt. Soit ensuite X une

mesure de probabilité sur [0,1] et notons par A(u) le maximum des À|Y, t+u]
pour tout t dans [0,1 — u\. Nous avons alors pour tout r > 0

[ \F(t)\dX <2r + A(r/M)(l + m2Mr~3).

Démonstration. Recouvrons [0,1] par au plus M/r intervalles disjoints
de longueur r/M. Il reste au plus un intervalle de plus petite longueur. Soit
N le nombre de ces intervalles sur lesquels sup|F(Y)| > 2r. En utilisant le
théorème des accroissements finis, nous constatons que \F(t)\ > r sur tous
les intervalles considérés. Par conséquent

m2 > Nr2
~ M

Il vient

[ \F(t) \ dX < 2r + (N + l)A(r/AQ
Jo

< 2r + A(r/M)(l + m2Mr~3).

6. Estimation de la transformée de Fourier

Nous nous occupons ici du comportement asymptotique de

ß(u) — / e(ut)dß(t)
Jo

pour \u\ grand; nous supposerons, sans rectriction, u positif.
Commençons par rappeler que si a [0; au a2,... ] et t TJ(x)

[0, aj.|_i j... ]

[0;aua2,...,aj + t]
Pj + tPj-i
Qj + tQj-1

Qj (Qj + tQj_i)Qj
'

Partons donc de J JcJq fixe: par construction, nous pouvons décomposer
notre mesure p sous la forme

F y x • • • x vt xp := pk x p
k
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de sorte que

m=/' Ie (êErSS") dp,("m"

:= [ F(t)d/j,(t),
Jo

ou

(10)

à laquelle nous nous proposons d'appliquer les lemmes précédents. Puisque
J est fixé, nous avons

(11) ßI_2e < Qj<Q1+26,^}Q'~2e < i < ß1+2£
»

avec Q — exp(/crm(5)) ; mais, comme <2 tend vers l'infini avec /, nous

pouvons le choisir au voisinage d'un nombre fixé à l'avance, à une constante

multiplicative près (constante comprise entre exp(Joam(ô)) et son inverse).

Nous commençons par déduire des lemmes 5.1 et 5.2 une estimation de

m2 /o \F(t)\2dt.

LEMME 6.1. Si Q2+4S > u, nousavons

fX ,2 ô1+ Q6e

Démonstration. En développant le carré, nous obtenons

T ,F(')|J<*= ///' ' - «rfe) ")

où Pj,Qj,. sont des variables indépendantes de Pj, QJl... et identiquement

distribuées. Notre expression se réécrit:

IIiiïrPcé)u)Le(md'dndn
où l'on a posé

/(—l)Jw £(— l)Ju
(i2) m (Qj + tQj-i)Qj (Qî + tQÎ^QJ

L'argument f(t) de l'exponentielle admet pour dérivée:
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f'(t) ((Qj +tQj-1)2( l)U

soit encore

_
(Qj+QÎ + KQJ-I + ôy-i)X0 - 0 + X0-i -; } (0 + *ß/-i)2(0 + *0_i)2

qui pourra s'écrire g(t)(o:t + ß) avec :

0 + 0*+f(0-i + 0_i)
5W (0 + *0-i)2(0*+*0_i)2

1 1

~ (0+*0-i )(0+*0_i)2
+ (0+*0-i)2(0+*ei-i) '

Il nous faut aussi calculer

9'{t) ~(0 + *0-l)2(ö} + *öy_i)2Ä(O

où nous avons posé

,2QU<.Ql +tQj-<),HO &-,+&-,+ w+lQU)
+ (a + ,a_,)

•

Nous poursuivons l'estimation de

(13) [ notée k(Qj,Qj-uQ*j,QÎ-i)
J o

en discutant selon l'existence ou non d'un point stationnaire pour /, i.e.

d'un point t G [0,1) tel que f{t) 0 ce qui impose Qj~\ ^ ö}_i>
^=-(ß>-0)/(ß/-i-Öj-i)e[O,l).

1) Tout d'abord rappelons (voir (4)) que si Qj~\ ßjLi Qj — Qj,
at a* pour tout / < J ; les points Pj/Qj et P}/Q} sont donc confondus, et

ft(ô/î ô/-i, ôy, ßy_i) 1 d'après (12) et (13). Compte tenu du lemme 2.1 et
du caractère hôldérien de ß (proposition 4.1 a)), la contribution de ce terme
dans le calcul de la transformée de Fourier sera au plus

[f <Qj,Qj-uQhQLi)dpkdpk
J J {Qj=Q*,Qj-x=Q*^}

f/r
iJ W&+W>'n

1

^ Q2ô-ôe
'
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2 a) Supposons qu'il y ait un point stationnaire (en particulier ß/-i i=-

alors le lemme 5.2 donne

(i4) «(ô7,Ô7-I, Qj,Ô;.i)«
ö2+23£

Ö7-11M

En effet, avec les notations du lemme 5.2,

\g(t)\ >a=^ô"3_6e,

et

Ifl'Wl < 1O03+14<S

l'estimation suit en se rappelant que

\a\ \Qj-l-Q*J_l\u.

b) Supposons maintenant plus généralement que 1 < \Qj~\ — ô/_i | < #0
et |(ß/ — Qj)/(Qj-i — Qj-\)\ < 2; si H décrit les entiers de la forme 2J

entre 1 et Hq, cet ensemble est approximativement la réunion sur j des

ensembles

y-1 < I07-1 - I < y, 10 -0= < - 0^|.
En posant H 2/,

{H/2 < IÖ7-! - 0_, I < //, |0 - 0| < 2|0_1 - I }

c {Ä/2 < |0-1 - I < 0 10- 01 < 2tf}

de sorte que

/ / ^P&

< / / dPk dpk
J J{H/2<\Pj-P*\<H, \Qj-Q*\<2H}

en utilisant l'invariance de la mesure pk par la transformation (<21,..., aj) —^

(a/,...,ai) (proposition 4.1 b)) ainsi que (2) et (3).
Or les hypothèses Hj2 < |P/ — PJ | < //, |ß/ — Qj\ < 2H impliquent

clairement,

< 0/-01 I0-0IA* g
0 0 - 0 00 0-2e '
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donc, si nous conservons dans ce cas les estimations 14 de k, obtenues dans

le cas a) d'existence d'un point stationnaire, nous obtenons une contribution
de l'ordre de

II <QJ,QJ-UQ*J,Q*J-I) dpkdpk
{H/2<| Qj_,-e;_, |<H, |Qj-Q* |<2|Qj-i-Q*_, |}

< ~
/=- / / P, dpkdpk

JJ U<k<H/Q

Qï
Hü JJ L

+23e

< ^77

Vïïû

q\ +23e

Vïïû
en se souvenant de la propriété hôldérienne de (x (proposition 4.1 a)).

En sommant sur j, nous trouvons pour l'ensemble

{1 < \Qj-i~QU| < Ho, \Qj - Q*j\<2|Qj_x - | }

une contribution totale d'au plus

<2^+23£ 5-1,2
QSU0 '

c) Si \Qj~i — Q}_x\ > Hq cette fois, le même lemme fournit une
contribution de l'ordre de

ßi+237Vhûû.

3a) Si ßy_! ^ Qj_jet | (Qj-Qj~> 2, il n'y a pas
de point stationnaire et nous sommes dans les conditions d'application du
lemme 5.1 qui nous donne la majoration

>o3+26e
(15) VQj,QJ-UQJ,QUX

(|<2/-ôJ| + |Ô7-I-Ô;_J|
En effet il résulte des calculs précédents, en reprenant la minoration de

\g(t)\, que

l/'coi> \ß\\g(t)\ > «ö"3_fe|ßy- q;i
et en dérivant fit) (at+ ß)g(t) nous déduisons

\f"(t)\<\a\\g(t)\ + (\a\ + \ß\)\g'(t)\

« Q-3~6£\Qj - Q*j\u + Q~3+Ue(\Qj - I + | - )"
« Q~3+14£(\QJ - Q*j\+ |ßy_i - QU I)«,

d'où la majoration annoncée.
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Le cas \Q > Hq ayant été pris en compte à l'étape
précédente, il suffit de considérer l'ensemble 1 < \Qj-i ~QU\<Ho,

| (Qj— Q*j)/(Q.i-\ — Qj—i)| > 2 et la discussion se poursuit ainsi:

b) Supposons 1 < | Qj-i— Qj-i\et|Qj - 1 > 2H0 ; la

majoration du lemme 5.1 nous donne une contribution de

Q3-\-26e

H0u

c) Supposons | | < 2Ho (ce qui implique 1 < |Ô7-1 - ô/-l| <
H0); cet ensemble se décrit comme la réunion sur avec 1 < 2' < Hq, des

ensembles

{ QJi- Qj-I| < V, y<\Qj-QJ\< 2i+l}.

Utilisons alors les estimations (15) de k, établies dans le cas a) sans point
stationnaire, nous obtenons par des arguments similaires

II K(QJ-, Qj-1, Qj-1 dpkdpk
{i<|ßj-i-e;_,|<ff, h<\qj—Qj \<2h}

qS+26erç«C —JJdpkdpk
<

Hu J J{l<\Pj-P*\<H, H<\Qj~Q*j\<2H}

g3+2fe ff
Hu JJ Pj__ <H/Q

dpkdpk

q3-\-26e

« TT""«'
En sommant sur j, nous trouvons pour l'ensemble

{1 < I Qj-X-QUI< Ho, | Qj -Q*J|> 2| Qj-X- QU\}
une contribution totale d'au plus

g3+26e

HpWu'

Il s'agit en fait essentiellement du carré de la quantité précédente. Comme

notre intégrale est inférieure à 1, nous pouvons négliger ce terme (aux Q26e

près).
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4) Enfin la dernière contribution qu'il faille ajouter vient du cas Qj~\
Qj_i mais Qj ^ QJ ; il se traite comme le cas 3) précédent et fournit un

terme majorant du même ordre de grandeur.

Nous sommes en mesure de terminer la preuve du lemme : le choix optimal
dans l'estimation est donné par H0 Q ; en négligeant la contribution des

cas 3) et 4), cela nous donne

Cl 9 QI-\-26s QÔ£

|^(0| dt + 7^J o V u y
comme attendu.

Pour estimer ß(u) /J F(t) d[i{t), nous pouvons maintenant utiliser le

lemme 5.3 avec la fonction F et la mesure /x : par construction, la fonction
de répartition de /x est hôldérienne d'exposant (5 et M 2ttQ~2+4£u convient.
Pour tout r > 0 nous obtenons

\ß(u)\ <C r +A(r/M)(l + m2Mr~3)

r\28 —2+4er 1 — ô />ol+26e \«r+,w+^^(^r+|î).
Nous choisissons Q de façon à égaliser les deux termes de l'estimation de

ra2, ce qui revient à prendre Q2+Aô de l'ordre de u ; comme nous l'avons
remarqué en effet, nous pouvons, u étant fixé, choisir / kJ0 suffisamment
grand, i.e. k suffisamment grand, pour rendre Q proche de uÄ : il suffit de

prendre

L(2 + 4Ô)amJo-

pour avoir

q2+4ö _ e(amkJ)(2+4S) < ^ < q2+4ôe(<TmJ0)(2+45)

Il en résulte

(16) \fi(u)\< r+ rsus/(l+2S)u~5+
(17) «r r+ r6u-2S*/(i+26)+ u(6-2S2+15S)/(l+26)rS-3

Il reste à optimiser en r < 1. Choisissons-le de façon à égaliser les deux
termes extrêmes qui sont dominants. En ignorant e, cela revient à prendre r
tel que

r _ rö-3u(ö-2ö2)/(l+2ö)

\ ou encore
j
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£-2£2
r — uP avec 77

(4 - 6){l + 26)

ce qui est licite si l'on suppose 5 > 1/2. En reportant dans (17), il vient

^ + U-152^4-5*1+2^)] + unuUe/V+W « uv+*e

car le second terme est négligeable.

Nous avons ainsi établi le théorème 1.4.

7. Une question de Montgomery

Montgomery a posé dans [12] la question suivante (problème 45) :

Existe-t-il un nombre normal à quotients partiels bornés

Définition 7.1. Un nombre x G [0,1) est normal en base q où q est

un entier q > 2 si et seulement si la suite {(fx) est équirépartie modulo 1,

ce qui, via le critère de Weyl, s'écrit:

V k f 0, lim — e{kqnx) 0
N M 1N N

n<N

Le théorème de Borel établit que si q > 2, presque tout nombre (au sens
de la mesure de Lebesgue) est normal en base q. C'est le théorème ergodique
appliqué à la transformation x G [0,1) qx mod 1. Qu'en est-il en restriction
à un sous-ensemble de nombres irrationnels de [0,1) Un outil est le suivant:

THÉORÈME 7.2 (Davenport-Erdôs-LeVeque). Soit (sn) une suite d'entiers
et soit p une mesure de probabilité portée par [0,1) telle que

1
N

SSjqîSl ~ < 00 '
N> 1 m,n=l

pour tout entier k f 0, alors pour ß-presque tout x G [0,1), la suite (snx)

est équirépartie modulo 1.

Démonstration. Fixons k f 0. Notons ^ J2u<n e(ksnx), et

In,1c / \ SN,k{x)\2dp{x). L'hypothèse n'est autre que

E^T<+to> Vfc^o.
N> 1

Nous utilisons un lemme classique sur les séries :
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LEMME 7.3. Soit (.xn) une suite de réels > 0 telle que J2n>oxn/n < 00*

Alors il existe une suite d'entiers (Nr) telle que:
a) Y,rXNr < 00 >'

b) limrNr+x/Nr 1.

Nous omettons provisoirement l'indice k et nous appliquons le lemme à

la suite (/#). Il existe une suite (Nr) telle que

53 /w'- [53\SNr<oo

r
J

r

En particulier, ]Pr |Sjvr(x)|2 < oo //-presque partout et S^r(x) -A 0 //-presque
partout. Maintenant nous interpolons :

Si Nr < N < Nr+u on a: NSn - NrSNr m ENr<n<N e(ksnx) et

\NSn- NrSNr\ <T,Nr<n<N1 — N — Nr < Nr+i - de sorte que

N\Sn\< Nr\SNr\ +Nr+l-Nr et \SN(x)\ < |%(*)| +
Nr+i' ~

I\r
Par la propriété b) du lemme, Sn(x) tend vers 0 pour //-presque tout x,

ce qui prouve l'équirépartition modulo 1 de la suite (snx) pour //-presque
tout x.

COROLLAIRE 7.4. Soit X un ensemble de réels portant une mesure de

probabilité // telle que ß(n) 0(\n\~5) où ö > 0.

Alors, pour toute suite (sn) strictement croissante d'entiers, la suite (snx)

est équirépartie modulo 1 pour // -presque tout x G X.

Démonstration. Il suffit de vérifier les hypothèses du théorème 7.2 avec

sn et // la mesure portée par X. Or si k / 0,

N

^ ^ A(k(sn ^m)) N y ^ ß(k(sn — sni))

m,n= 1 m,n<N, m^én

< N +CIm:n<.N, m^n
N m— 1

<AT + 2C^y]|fe-Äm)|-L
m—2 n= 1

Lorsque m > n, sm sn — sm sm—\ -f- sm— \ • • • -f- — sn ^ m — n, et
N N m-1

\ß(k(Sn - ^m))| < N + 2C ^2 ~~ n^~Ô ' maintenanb
m,n= 1 m=2 tî=1
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N m—1 N m—1

Y Y(m-n^~s Y Yn~s
m—2 n=1 m=2n=l

A-l
<NY0(N2-5).

n= 1

Finalement Ejv>i p- Lm,n=i |AW>« - */»))t < 00 puisque >0.

Nous en déduisons le résultat suivant qui contient celui de Baker:

COROLLAIRE 7.5. SozY 4. wn ensemble fini d'entiers > 1 contenant au
moins deux éléments; il existe une infinité de x G F(A) normal en toute base

dès que la dimension de Hausdorff de F(A) est > 1/2.

Démonstration. Soit 1/2 < ô < dinihF(^l), 0 < 5 et un

entier > 2. Il résulte du corollaire 7.4 appliqué avec sn qn et ß /jl£j&

la mesure de Kaufman portée par F(A), donnée par le théorème 1.4, que
l'ensemble

Afq {x e F(A) normal en base q }

est de mesure pleine pour la mesure de probabilité ß. Ainsi ß( p| Afq) 1

q> 2

d'où le corollaire.

8. COMMENTAIRES ET QUESTIONS

Les mesures de Kaufman ainsi construites possèdent deux propriétés

importantes : le comportement hôldérien de la fonction de répartition et le

comportement asymptotique précis de la transformée de Fourier. En fait la
seconde propriété, fondamentale ici, découle en partie de la première, mais

le comportement hôldérien joue un rôle primordial dans l'approche de la

conjecture de Littlewood par Pollington & Velani [14].
Les ensembles F(A), \A\ > 2, sont donc des ensembles de multiplicité

stricte, lorsqu'ils possèdent une dimension de Hausdorff > 1/2. On peut se

demander si la borne 1/2 est infranchissable ou si elle relève au contraire
de la construction. La propriété pour un ensemble d'être de multiplicité peut
paraître stable: un résultat fameux de Salem & Zygmund (voir [10]) établit,

pour des ensembles de type Cantor à rapport de dissection £, l'équivalence:

E est de multiplicité ^ S
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où S est l'ensemble des nombres de Pisot. L'ensemble S étant fermé, la

propriété est stable pour les petites variations de £. Qu'en est-il pour les

ensembles du type F{A) Ceci amène naturellement les questions :

Questions. Soit A un ensemble fini d'entiers > 1 tel que \A\ > 2 et

dimhFQ4) d.
1. F{A) est-il encore de multiplicité?
2. F(A) porte-t-il une mesure dont la décroissance à l'infini est en

C>( 1 /(log |n|)6) pour un 5 > 1

Le lien entre la dimension de Hausdorff et la propriété de multiplicité
n'est pas clairement établie puisque des ensembles de dimension de Hausdorff

positive, tel l'ensemble triadique de Cantor, sont annulés par toute mesure de

Mo ([10]) tandis que certains autres, de dimension nulle, sont de multiplicité,
ce qui est assez frappant ([2], [3]).
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