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6. ABOUT STRAIGHT QUASI GEODESICS

DEFINITION 6.1. Let ()Z f,o,H) be a forest-stack. A J,J)-quasi
geodesic, J > 1, J/ > 0, in (X, d&v,ﬂ)) is a telescopic path S of which
each subpath §' satisfies the inequality

18| 50y < Tz 5 (S, KN + T

LEMMA 6.2. Let p be a straight (J,J')-quasi geodesic with
'rmax _f(l(p))l S To 3

where Vg = maxycpf(x). There exists a constant Cso(J,J) > M, which
increases with J and J', such that if |[pl,,..|, 2> Ce2(J,J") then [ply,, is
dilated both in the future and in the past after Cg2(J,J ).

+1p.

Proof. By the bounded-dilatation property, |p|z ,, = AT P

rm ax

We choose n, so that /\fo — JX7"0 > (0. For any n greater than n,, the
inequality
T2t + 2nto + A" |[Pl,. ], )+ < AP

(2] = Dtg4+-2nJtg+-J’
Finax A;fo —J)\— Mo

Ymax + tO

rmax

. This is in contradiction with

p being a (J,J')-quasi geodesic. If |[p],, |, ~ > Ny“M, then, by the
bounded-dilatation property, the geodesic preimages of [p],, . under o, ; have

/
horizontal length at least M. Hence, if moreover |[pl,,.|, Gf ;_1?;04;2;{ “’t:J
- max - — N
+

then the hyperbolicity of the semi-flow implies that they are dilated in the
past after #y. The bounded-dilatation property implies that these geodesic
preimages have horizontal length at least A\L™"|[pl,,.. .. Choosing N, such
that AV > X"+ we conclude that [p],, . is dilated in the past after (N.+1)z.
The same arguments allow us to find a lower bound on |[p],,,. for [p],,..
to be dilated in the future after some fixed finite time. []

is satisfied for |[p],, .

Viax

DEFINITION 6.3. Let (Xv .f,0:) be a forest-stack. A stair in X isa telescopic
path along which the function f is monotone.

LEMMA 6.4. Let p be a straight (J,J')-quasi geodesic stair between two
points a and b, f(a) < f(b). There exists a constant Cg4(J,J") > M, which
increases with J and J', such that if the horizontal length of a horizontal
geodesic I between a and O~ (b) (resp. b and O (a)) is at least Cg4(J,J"),
then I is dilated in the past (resp. in the future) after 1.
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Proof. Let X be such that NoX > X + X% Cs,(J,J'). Assume that the
horizontal length of some horizontal geodesic I between a and O~ (b) is at
least X. By Lemma 6.2, the choice of X implies that if 7 is dilated in the
future after #y, then the first point a; along p satisfying f(a;) = f(a)+1 is at
horizontal distance greater than X from O~ (b). By induction, we thus obtain an
infinite sequence of points aj,as,...,d,,... in p such that f(a;) = f(a;_1)+1
and each a; is at horizontal distance at least X from O~ (b). This is absurd.
The other case of Lemma 6.4 is treated similarly. [

DEFINITION 6.5. Let Sp, S; be two telescopic paths whose pulled-tight
projections agree after some finite time. We say that Sy and S, are in fine
position if, for any two points x, y, x # y, satisfying x € §;NO(), y € Sit1,
i=0,1 mod?2, then x € OT(y) UO™(y).

Let us observe that a path is always in fine position with respect to any
of its pulled-tight projections.

DEFINITION 6.6. A +-hole (resp. —-hole) 1s a telescopic path with both
endpoints in a same stratum, which is in fine position with respect to the
horizontal geodesic I between its endpoints, and which satisfies furthermore

minge, f(x) 2 f(I) (resp. maxye,f(x) < f(D)).

LEMMA 6.7. Let p be a straight (J,J')-quasi geodesic -+ -hole (resp.
—-hole). There exists a constant Cg7(J,J') > M, which increases with J
and J', such that, if I is the horizontal geodesic between the endpoints of
p and if |I|;y > Ce1(J,J"), then I is dilated in the past (resp. future) after
Ce.7(J,J )t

Proof. We consider a decomposition p;p, ... p; of p such that

max f(x) — fA@)| < to,
XCPpi

and a decomposition I;...I; of I, where I; joins the past orbits of the
endpoints of p;. We denote by Ip the union of the I;’s which are dilated in
the past after Cg.2(J,J )to, and by I¢ the union of the other intervals in /. By
Lemma 6.2, the horizontal length of any interval in I is at most Cgo(J,J").

Let n be some positive integer. We consider a horizontal geodesic -z with
I = [A¢ny+ncs 7,07y, and assume that % is dilated in the future after #. Then,

N p sy + A" elrgy < hlpay < A7 Uplsgy + Helsg)) -
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AII_)\—N X(n) . .
Hence |1c|f(1) ¥ oew ID{f(I), so that IIC[f(I) > 1+X(n)lllf(1) with X(n) =
:\\,, :\\ —. Now lim, o0 li(g’g()n) — 1, so that for some n, > 1, for any
n>n,, 2@ > 1 GQince the horizontal length of any interval [ in Ic

+X(m) <= 2°
is at most Cg2(J,J"), and the telescopic length of the associated py C p 1s at

least 7y, we obtain
Io

lpl(i%) =z 2C.2(J,J") |I\f(l)'

On the other hand, < 2Jntg+ A"z, +J" for any n > n.. The last
two inequalities give, for n > n., 2Jnty + A~"J ey ¥ 2 seom iy
equwalently 2nty +J > (-2C—(J—J,—) — A"y . We choose no = n, such

that m A" > 0. We get

2Jl’lot0 -+ J! I
_ A—noJ - , If(I)

2Cs. 2(.] J")

2Jnoto+J’
Thus, fOl‘ |I|f(1) > [ __)\‘”O] o

2Cg 2, J7)
[|;q) > N M, then |h|;,, > M. Therefore h is dilated in the past after 7. We
choose N such that ANAT" > A. Thus, if |1],, > max(\y M, 2ngitl

_’O—. _— —nhgp
2Cg oW,ID) ATt J

then I is dilated in the past after (1n,Cs2(J,J") + N)ty. The arguments and
computations in the case where max,c,f(x) < f(I) are the same. L]

h is not dilated in the future after 7. If

7.  SUBSTITUTION OF QUASI GEODESICS

LEMMA 7.1. Let p be a (J,J")-quasi geodesic. Let q be obtained from
p by replacing subpaths p; C p by (L,L')-quasi geodesics q; satisfying the
following properties :

e g; has the same endpoints as p;,

e g; is L-close to p;,

4l 5y < Llpil g,

There exists a constant C;(L,L',J,J"), which increases in each variable,
such that q is a (C71(L,L',J,J"), C; (L, L', J,J"))-quasi geodesic which is
L-close to p.

Proof. Since each g; is L-close to a p;, and with the same endpoints,
q is L-close to p. Let us consider any two points x, y in ¢ and let g, C g
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