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The following important theorem shows that this action extends to Qm.

THEOREM 3.22 ([BEG]). There exists a unique representation of the

algebra eHme on Qm in which an element q G C[f)]w acts by multiplication
and an element q G C[ï)*]w by Lq.

Proof Since by Proposition 3.5, Lq preserves Qm, we get a uniquely
defined representation of the subalgebra of eHme generated by C[f)]w and

C[f)*]w on Qm. The result now follows from Theorem 3.21.

3.10 Proof of Theorem 1.8

Finally we can prove Theorem 1.8.

To do this, observe that as an eHme -module, Qm is in the category
0(eHme), and C[f)*]w acts locally nilpotently in Qm (by degree arguments).
We can now apply Theorem 3.18 and Theorem 3.17 and deduce that Qm is

* a direct sum of modules of the form eM(0, t). As a C[()] x C[W] -module,

M(0, r) C[f)] 0 r. On the other hand, by Chevalley's theorem, there is an

"j isomorphism C[fj] cs C[f)]w (8) C[W], commuting with the action of W and

J C[f)]w. Thus we get an isomorphisms of C[f)]w -modules

I eM(0, r) - (M(0, r))w ~ C[\)]w 0 (C[W] 0 r)w - C[t)]w 0 r
I proving that pM(0,t) and hence Qm is a free C[()]w -module.

; Example 3.23. For W Z/2 and I) C, take the polynomials 1, x2m+1.
1 Notice that L(1) - L(x2m+l)- 0 while 5(1) 1, s(x2m+1) -
J being the element of order two. It follows that Qm as a eHme -module is the

)j direct sum of C[x2] ® x2m+lC[x2]. These modules are irreducible. Moreover,
1 C[x2] ~ eM(0,1), x2m+1C[x2] 2^ eM(0,e), s being the sign representation.
i
I 3.11 Proof of Theorem 1.15

I Let I be a nonzero two-sided ideal in V(Xm). First we claim that I
J nontrivially intersects Qm. Indeed, otherwise let K G I be a lowest order

I nonzero element in I. Since the order of K is positive, there exists / G Qm such
that [KJ\ / 0. Then [KJ] G / is of smaller order than K, a contradiction.

I Now let / G Qm be an element of /. Then g YlweWwf G /. But g

I is W-invariant. This shows that the intersection J of I with the subalgebra

I Hm in V(Xm) is nonzero. But Hm is simple by Theorem 3.19, so J Hm.
I Hence, 1 E J CI, and I — V(Xm).
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