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The L;, together with these isomorphisms, define a gerbe over SUd + 1),
representing the generator of H>(SU(d + 1),Z).

More generally, consider any compact, simply connected, simple Lie group
G of rank d. Up to conjugacy, G contains exactly d+ 1 elements with semi-
simple centralizer. (For G = SU(d + 1), these are the central elements.) Let
Ci,...,Cqp1 C G be their conjugacy classes. We will define an invariant open
cover Vi,...,Vy1 of G, with the property that each member of this cover
admits an equivariant retraction onto the conjugacy class G C V;. It turns
out that every semi-simple centralizer has a distinguished central extension by
U(1). This central extension defines an equivariant bundle gerbe on (;, hence
(by pull-back) an equivariant bundle gerbe over V;. We will find that these
gerbes over V; glue together to produce a gerbe over G, using a gluing rule
developed in this paper.

The organization of the paper is as follows. In Section 2 we review the
theory of gerbes and pseudo-line bundles with connections, and discuss ’strong
equivariance’ under a group action. Section 4 describes gluing rules for bundle
gerbes. Section 3 summarizes some facts about gerbes coming from central
extensions. In Section 5 we give the construction of the basic gerbe over G
outlined above, and in Section 6 we study the ‘pre-quantization of conjugacy
classes’.

ACKNOWLEDGEMENTS. I would like to thank Ping Xu for fruitful discus-
sions at the Poisson 2002 meeting in Lisbon, and for a preliminary version
of his preprint [2] with Behrend and Zhang, giving yet another construction
of the basic gerbe over G. Their (infinite-dimensional) approach is based on
the notion of Morita equivalence of (quasi-)symplectic groupoids. I thank the
referees for detailed comments and suggestions.

2. GERBES WITH CONNECTIONS

In this section we review gerbes on manifolds, along the lines of Chatterjee-
Hitchin and Murray.

2.1 CHATTERJEE-HITCHIN GERBES

Let M be a manifold. Any Hermitian line bundle over M can be described
by an open cover U,, and transition functions x,,: U,NU, — U(1) satisfying
a cocycle condition (0x)epe = Xbcxa—c] Xap = 1 on triple intersections. The




310 E. MEINRENKEN

cohomology class in H'(M,U(1)) = H*(M,Z) defined by this cocycle is
the Chern class of the line bundle. Chatterjee-Hitchin [10, 18, 17] suggested
to realize classes in H>(M,Z) in a similar fashion, replacing U(1)-valued
functions with Hermitian line bundles. They define a gerbe to be a collection
of Hermitian transition line bundles L, — U, N U, and a trivialization, 1.e.
unit length section, #,,. of the line bundle (0L)y. = LbcLa_clLab over triple
intersections. These trivializations have to satisfy a compatibility relation over
quadruple intersections,

C -1 —1
(5Z)abcd = tbcdtacdtabdtabc =1 )

which makes sense since (0f)ucq 18 a section of the canonically trivial
bundle. (Each factor L, cancels with a factor La_b1 .) After passing to a
refinement of the cover, such that all L, become trivializable, and picking
trivializations, fu. is simply a Cech cocycle of degree 2, hence defines a class
in H*(M, u()) = H*(M,Z). The class is independent of the choices made in
this construction, and is called the Dixmier-Douady class of the gerbe.

Note that in practice, it is often not desirable to pass to a refinement.
For example, if M is a connected, oriented 3-manifold, the generator of
H3(M,Z) = Z can be described in terms of the cover U;, U,, where U; is
an open ball around a given point p € M, and U, = M\{p}, using the degree
one line bundle over U; N U, =2 5% x (0, 1).

2.2 BUNDLE GERBES

Bundle gerbes were invented by Murray [24], generalizing the following
construction of line bundles. Let m: X — M be a fiber bundle, or more
generally a surjective submersion. (Different components of X may have
different dimensions.) For each k > 0 let X*! denote the k-fold fiber product
of X with itself. There are k + 1 projections & : X1 — XK = omitting
the ith factor in the fiber product. Suppose we are given a smooth function
y: X1 — U(1), satisfying a cocycle condition §x = 1 where

Ox = OpxOix 105 x: XP — U®).

Then y determines a Hermitian line bundle L — M, with fibers at m € M the
space of all linear maps ¢: X,, = 7~ '(m) — C such that ¢(x) = x(x,x)px).
Given local sections o,: U, — X of X, the pull-backs of x under the maps
(04,0p): U, N U, — X2 give transition functions Y, for the line bundle.
Again, replacing U(1)-valued functions by line bundles in this construction,
one obtains a model for gerbes: A bundle gerbe is given by a line bundle
L — X™ and a trivializing section ¢ of the line bundle 6L = §L®;L™'®@05L
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over XB), satisfying a compatibility condition d¢ = 1 over X*! (which
makes sense since dt¢ is a section of the canonically trivial bundle dJL).
Given local sections o,: U, — X, one can pull these data back under the
maps (04,03): U, N U, — X2 and (04,0p,0.): U, NU, N U, — XB 1o
obtain a Chatterjee-Hitchin gerbe. The Dixmier-Douady class of (X,L,1) is
by definition the Dixmier-Douady class of this Chatterjee-Hitchin gerbe; again
this is independent of all choices. The Dixmier-Douady class behaves naturally
under tensor product, pull-back and duals.

Notice that Chatterjee-Hitchin gerbes may be viewed as a special case of
bundle gerbes, with X the disjoint union of the sets U, in the given cover.

REMARK 2.1. In his original paper [24] Murray considered bundle gerbes
only for fiber bundles, but this was found too restrictive. In [25], [29] the
weaker condition (called ‘locally split’) is used that every point x € M admits
an open neighborhood U and a map o: U — X such that 7 oo = id.
However, this condition seems insufficient in the smooth category, as the fiber
product X X3, X need not be a manifold unless 7 is a submersion.

2.3 SIMPLICIAL GERBES

Murray’s construction fits naturally into a wider context of simplicial
gerbes. We refer to Mostow-Perchik’s notes of lectures by R. Bott [23] and
to Dupont’s paper [12] for a nice introduction to simplicial manifolds, and to
Stevenson [29] for their appearance in the gerbe context.

Recall that a simplicial manifold M. is a sequence of manifolds (M,)5°,,
together with face maps 0;: M, - M,_, for i =0, ..., n satisfying relations
0;00; = 0;_100; for i < j. (The standard definition also involves degeneracy
maps but these need not concern us here.) The (fat) geometric realization
of M. is the topological space ||M|| = [[ -, A" x M,/ ~, where A" is
the n-simplex and the relation is (¢, 8;(x)) ~ (0(¢),x), for &' : A" — A"
the inclusion as the ith face. A (smooth) simplicial map between simplicial
manifolds M,, M, is a collection of smooth maps f,: M, — M), intertwining

the face maps; such a map induces a map between the geometric realizations.

EXAMPLES 2.2.

(a) If § is any manifold, one can define a simplicial manifold E,S where
E,S is the n+ 1-fold cartesian product of S, and 0; omits the jth factor. It
is known [23] that the geometric realization ||ES|| of this simplicial manifold
1s contractible. More generally, if X — M is a fiber bundle with fiber S,
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one can define a simplicial manifold E,X := X"*1  with face maps as in
Section 2.2. The geometric realization ||EX|| becomes a fiber bundle over M
with contractible fiber ||ES]].

(b) [22, 27] For any Lie group G there is a simplicial manifold B,G = G".
The face maps 0; for 0 < i < n are

0i(g1s- -, 9n) = (915 -, GiGit1y - -+ Gn) 5

while 0y omits the first component and 0, the last component. The map
Tn: E,G — B,G given by m(ko, ..., ky) = (koki', ... ko_ik;!) is simplicial,
and the induced map on geometric realizations is a model for the classifying
bundle EG — BG.

(c) [27, 23] If U = {U,,a € A} is an open cover of M, one defines a
simplicial manifold

unM = H Uao...an
(a0,...,a,)EA,
where A, is the set of all sequences (ap,...,a,) such that U, , =

Ug,N...NU, is non-empty. The face maps are induced by the inclusions,

8,‘3 Uao...a,, — Uao...A

a;...a,

One may view this as a special case of (a), with X =[] ., U,. It is known
[23, Theorem 7.3] that ||{U/M]| is homotopy equivalent to M.

(d) [2] The definitions of E,G and B,G extend to Lie groupoids G over
a base S. If s,7: G — § are the source and target maps, one defines E,G as
the n+ 1-fold fiber product of G with respect to the target map ¢. The space
B,G for n > 1 is the set of all (g1,...,g9,) € G"* with s(gj) = t(gj—1), while
BoG = S. The definition of the face maps 0;: B,G — B,_;G is as before
for n > 1, while for n=1, 0y =t and 0, = s. We have a simplicial map
E,G — B,G defined just as in the group case. ’

The bi-graded space of differential forms €°(M,) carries two commuting
differentials d,d, where d is the de Rham differential and 6: QF(M,) —
QK(M,1) is an alternating sum, da = Z:’jol (—=1)0c. It is known [23,
Theorem 4.2, Theorem 4.5] that the total cohomology of this double complex
is the (singular) cohomology of the geometric realization, with coefficients
in R. _

We will use the 4 notation in many similar situations: For instance, given a
Hermitian line bundle L — M,,, we define a Hermitian line bundle 6L — M,

as a tensor product,
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-1 * +
L=0jL®OL™ ®- - ®0, (L".

The line bundle §(6L) — M,., is canonically trivial, due to the relations
between face maps. If o is a unitary section (i.e. a trivialization) of L, one
uses a similar formula to define a unitary section éo of dL. Then §(do) =1
(the identity section of the trivial line bundle d(dL)). For any unitary connection
V of L, one defines a unitary connection 6V of L in the obvious way.

CONVENTION. For the rest of this paper, we take all line bundles L to be
Hermitian line bundles, and all connections V on L to be unitary connections.

Let M. be a simplicial manifold. One might define a simplicial line
bundle as a collection of line bundles L, — M, such that the face maps
0;: M, — M,_; lift to line bundle homomorphisms 5,-: L, — L,_, satisfying
the face map relations. Thus L, is itself a simplicial manifold, and its geometric
realization ||L|| is a line bundle over |[M||. Equivalently, the lifts d; may
be viewed as isomorphisms, 0;L,_; — L,. In particular, we may identify L,
with the pull-back of L := Iy under the nth-fold iterate Jyo --- o 0.

The isomorphisms 0L = OjL = L, determine a unitary section ¢ of
0L — M, , and the compatibility of isomorphisms

(0002)"L = (0001)*L 22 (0p0p)"'L = L,

amount to the condition dz = 1. (Compatibility of the isomorphisms for L,
with n > 3 is then automatic.) That is, a simplicial line bundle over M,
is given by a line bundle L — My, together with a unitary section t of
0L — M, such that 6t =1 over M,. A unitary section s of L with §s = ¢
induces a unitary section of ||L|| — ||M||.

Taking L to be trivial, we see in particular that any U(1)-valued function
t on M, with 6t = 1, defines a line bundle over the geometric realization.
A trivialization of that line bundle is given by a U(1)-valued function on M,
satisfying ds = ¢. Replacing U(1)-valued functions with line bundles, this
motivates the following definition.

DEFINITION 2.3. A simplicial gerbe over M, is a pair (L,1), consisting
of a line bundle L — M, together with a section ¢ of §L — M, satisfying
6t = 1. A pseudo-line bundle for (L,?) is a pair (E,s), consisting of a line
bundle £ — M, and a section s of E~! ® L such that &s = ¢.
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REMARK 2.4.

(a) We are using the notion of a simplicial gerbe only as a ‘working
definition’. It is clear from the discussion above that a more general notion
would involve a gerbe over M.

(b) In [9], what we call simplicial gerbe is called a simplicial line bundle.
The name pseudo-line bundle is adopted from [9], where it is used in a similar
context.

A simplicial gerbe over UM (for a cover U of M) is a Chatterjee-Hitchin
gerbe, while a simplicial gerbe over E.X = X!*T1 (for a surjective submersion
X — M) is a bundle gerbe. It is shown in [24] that the characteristic class of
a bundle gerbe (X, L, ) vanishes if and only if it admits a pseudo-line bundle.

- EXAMPLE 2.5 (Central extensions). (See [9, p.615].) Let K be a Lie
group. A simplicial line bundle over B.K is the same thing as a group
homomorphism K — U(1) : The line bundle L — ByK is trivial since ByK is
just a point, hence the unitary section ¢ of 4L becomes a U(1)-valued function.
The condition dz = 1 means that this function is a group homomorphism.

Similarly, a simplicial gerbe (I', 7) over B.K is the same thing as a central
extension
U(l) > K —K.

Indeed, given the line bundle I' — K let K be the unit circle bundle inside
I". The fiber of 6I" — K? at (ki,k,) is a tensor product szl“,;,izrk,, hence
the section 7 of 6I" — K? defines a unitary isomorphism I I, = Iy, , or
equivalently a product on K covering the group multiplication on K. Finally,
the condition d7 = 1 is equivalent to associativity of this product.

A pseudo-line bundle (E,s) for the simplicial gerbe (I',7) is the same
thing as a splitting of the central extension: Obviously E is trivial since ByK
is just a point; the section s defines a trivialization K = KxU(1), and &s = ¢
means that this is a group homomorphism.

DEFINITION 2.6. A connection on a simplicial gerbe (L,f) over M, is a
line bundle connection V%, together with a 2-form B € Q*(My), such that
(0VHt =0 and

0B = —1— curv(V5).
271

Given a pseudo-line bundle £ = (E,s), we say that V£ is a pseudo-line
bundle connection if it has the property ((6VE)~1VL)s = 0.
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Simplicial gerbes need not admit connections in general. A sufficient
condition for the existence of a connection is that the §-cohomology of the
double complex QF(M,) vanishes in bidegrees (1,2) and (2, 1). In particular,
this holds true for bundle gerbes: Indeed it is shown in [24] that for any
surjective submersion 7: X — M the sequence

Q1) 00— QM) " R0 =2 QFx®y 2 ok xBly s ..

is exact, so the ¢-cohomology vanishes in all degrees.

Thus, every bundle gerbe G = (X,L,t) over a manifold M (and in
particular every Chatterjee-Hitchin gerbe) admits a connection. One defines the
3-curvature n € Q*(M) of the bundle gerbe connection by 7*n = dB € kerd.
It can be shown that its cohomology class is the image of the Dixmier-Douady
class [G] under the map H>(M,Z) — H>(M,R). Similarly, if G admits a
pseudo-line bundle £ = (E,s), one can always choose a pseudo-line bundle
connection VZ. The difference - curv(VZ) — B is §-closed and one defines

27

the error 2-form of this connection by
1
m*w = — curv(VF) — B.
27

It is clear from the definition that dw +n = 0.

REMARK 2.7. There is a notion of holonomy around surfaces for gerbe
connections (cf. Hitchin [18] and Murray [24]), and in fact gerbe connections
can be defined in terms of their holonomy (see Mackaay-Picken [20]).

2.4 EQUIVARIANT BUNDLE GERBES

Suppose G 1is a Lie group acting on X and on M, and that 7: X — M is
a G-equivariant surjective submersion. Then G acts on all fiber products
X1, We will say that a bundle gerbe G = (X,L,1) is G-equivariant,
if L i1s a G-equivariant line bundle and ¢ is a G-invariant section. An
equivariant bundle gerbe defines a gerbe over the Borel construction!)
X = EG xg X — Mg = EG xg M, hence has an equivariant Dixmier-
Douady class in H>(Mg,Z) = Hé(M ,Z). Similarly, we say that a pseudo-line
bundle (E,s) for (X,L,t) is equivariant, provided E carries a G-action and
s 1S an invariant section.

') We have not discussed bundle gerbes over infinite-dimensional spaces such as M. Recall
however [4] that the classifying bundle EG — BG may be approximated by finite-dimensional

principal bundles, and that equivariant cohomology groups of a given degree may be computed
using such finite dimensional approximations.
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REMARK 2.8. As pointed out in Mathai-Stevenson [21], this notion of
equivariant bundle gerbe is sometimes ’really too strong’: For instance, if
X =[] U,, for an open cover U = {U,,a € A}, a G-action on X would
amount to the cover being G-invariant. Brylinski [9] on the other hand gives
a definition of equivariant Chatterjee-Hitchin gerbes that does not require
invariance of the cover.

To define equivariant connections and curvature, we will need some notions
from equivariant de Rham theory [15]. Recall that for a compact group G, the
equivariant cohomology Hy.(M,R) may be computed from Cartan’s complex of
equivariant differential forms €f.(M), consisting of G-equivariant polynomial
maps «: g — 2(M). The grading is the sum of the differential form degree
and twice the polynomial degree, and the differential reads

(dg @) () = da(§) — Ubm)(©),

where &y = %|t:0 exp(—t£) 1s the generating vector field corresponding to
¢ € g. Given a G-equivariant connection V> on an equivariant line bundle, one
defines [3, Chapter 7] a dg-closed equivariant curvature curvg(V%) € Qé(M).

A equivariant connection on a G-equivariant bundle gerbe (X,L,7) over
M is a pair (VE,Bg), where V! is an invariant connection and Bg € Qé(X)
an equivariant 2-form, such that §V*¢ = 0 and 6Bg = 5- curvg(V5). Its
equivariant 3-curvature ng € Q%L(M) is defined by 7*ng = dg Bg. Given
an invariant pseudo-line bundle connection VZ on a equivariant pseudo-line
bundle (E,s), one defines the equivariant error 2-form wg by

*we = — curvg(VE) — Bg.
27l

Clearly, dgwg + n¢g = 0.

3. GERBES FROM PRINCIPAL BUNDLES

The following well-known example [7], [24] of a gerbe will be important
for our construction of the basic gerbe over G. Suppose U(1) — K > K is
- a central extension, and (I', 7) the corresponding simplicial gerbe over B.K.
Given a principal K -bundle 7: P — B, one constructs a bundle gerbe (P, L,1),
sometimes called the lifting bundle gerbe. Observe that

E.,P =P xxE,K,
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