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The Calogero-Moser system has a generalization to arbitrary Coxeter
groups. Namely, consider a finite group W generated by reflections acting on
the space b, and keep the notation of the previous section. Fix a W -invariant
nondegenerate scalar product (—,—) on h. It determines a scalar product
on h*. Define the “energy function”

(p p) Z 7s(a‘saas)

R xebh, peh”

E(x,p) =
on T*fh = h x h*, where v: £ — C is a W-invariant function. Notice that
although oy is defined up to a non zero constant, by homogeneity, E is
independent of the choice of «,. We will call the system defined by E the
Calogero-Moser system for W.

If W is the symmetric group S,,, h = C”, then X is the set of transpositions
sij» 1 <J, and we can take oy = e; — ¢j, Then we clearly obtain the usual
Calogero-Moser system.

Below we will see that the Calogero-Moser system for W is completely
integrable.

2.3 THE QUANTUM CALOGERO-MOSER SYSTEM

Let us now discuss quantization of the Calogero-Moser system. We start
by quantizing the energy E by formally making the substitution

8

where 7 is a parameter (Planck’s constant). This yields the Schrodinger
operator

E\ — ——A Z ’Ys(amas) ,
SEZ
where A denotes the Laplacian.
In particular, in the case of W =S, we have

2. . . .
where A = > ; g_xl?' Setting G, = %%, we will from now on consider the
operator

og(x)

called the Calogero-Moser operator.
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We want to study the stationary Schrodinger equation :
(3) Hy=M, AeC.

As in the classical case, it is difficult to say anything explicit about
solutions of this equation for a general Schrodinger operator H, but for the
Calogero-Moser operator the situation is much better.

DEFINITION 2.1. A quantum integral of H is a differential operator M
such that
[M,H] =0.

We are going to show that there are many quantum integrals of H, namely
that there are n commuting algebraically independent quantum integrals
M,,...,M, of H. By definition, this means that the quantum Calogero-Moser
system is completely integrable.

Once we have found M;,...,M,, observe that for fixed constants
Wi, - -, Uy, the space of solutions of the system
My =
Mn¢ = /~Ln¢

1s clearly stable under H. We will see that this space is in fact finite
dimensional. Therefore, the operators M; allow one to reduce the problem of
solving the partial differential equation Hy = A to that of solving a system
of ordinary linear differential equations. This phenomenon is called quantum
complete integrability.

2.4 THE ALGEBRA OF DIFFERENTIAL-REFLECTION OPERATORS .

We are now going to explain how to find quantum integrals for H, using
the Dunkl-Cherednik method.

First let us fix some notation. Given a smooth affine variety X, we will
denote by D(X) the ring of differential operators on X. We are going
to consider the case in which X is the open set U in h which is the
complement of the divisor of the equation d(x) := Hsez as(x). Clearly

D) = DM)[1/6x)].

LEMMA 2.2. An element of D(U) is completely determined by its action
on C[U1" = C[U/W].
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