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The L;, together with these isomorphisms, define a gerbe over SUd + 1),
representing the generator of H>(SU(d + 1),Z).

More generally, consider any compact, simply connected, simple Lie group
G of rank d. Up to conjugacy, G contains exactly d+ 1 elements with semi-
simple centralizer. (For G = SU(d + 1), these are the central elements.) Let
Ci,...,Cqp1 C G be their conjugacy classes. We will define an invariant open
cover Vi,...,Vy1 of G, with the property that each member of this cover
admits an equivariant retraction onto the conjugacy class G C V;. It turns
out that every semi-simple centralizer has a distinguished central extension by
U(1). This central extension defines an equivariant bundle gerbe on (;, hence
(by pull-back) an equivariant bundle gerbe over V;. We will find that these
gerbes over V; glue together to produce a gerbe over G, using a gluing rule
developed in this paper.

The organization of the paper is as follows. In Section 2 we review the
theory of gerbes and pseudo-line bundles with connections, and discuss ’strong
equivariance’ under a group action. Section 4 describes gluing rules for bundle
gerbes. Section 3 summarizes some facts about gerbes coming from central
extensions. In Section 5 we give the construction of the basic gerbe over G
outlined above, and in Section 6 we study the ‘pre-quantization of conjugacy
classes’.

ACKNOWLEDGEMENTS. I would like to thank Ping Xu for fruitful discus-
sions at the Poisson 2002 meeting in Lisbon, and for a preliminary version
of his preprint [2] with Behrend and Zhang, giving yet another construction
of the basic gerbe over G. Their (infinite-dimensional) approach is based on
the notion of Morita equivalence of (quasi-)symplectic groupoids. I thank the
referees for detailed comments and suggestions.

2. GERBES WITH CONNECTIONS

In this section we review gerbes on manifolds, along the lines of Chatterjee-
Hitchin and Murray.

2.1 CHATTERJEE-HITCHIN GERBES

Let M be a manifold. Any Hermitian line bundle over M can be described
by an open cover U,, and transition functions x,,: U,NU, — U(1) satisfying
a cocycle condition (0x)epe = Xbcxa—c] Xap = 1 on triple intersections. The
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cohomology class in H'(M,U(1)) = H*(M,Z) defined by this cocycle is
the Chern class of the line bundle. Chatterjee-Hitchin [10, 18, 17] suggested
to realize classes in H>(M,Z) in a similar fashion, replacing U(1)-valued
functions with Hermitian line bundles. They define a gerbe to be a collection
of Hermitian transition line bundles L, — U, N U, and a trivialization, 1.e.
unit length section, #,,. of the line bundle (0L)y. = LbcLa_clLab over triple
intersections. These trivializations have to satisfy a compatibility relation over
quadruple intersections,

C -1 —1
(5Z)abcd = tbcdtacdtabdtabc =1 )

which makes sense since (0f)ucq 18 a section of the canonically trivial
bundle. (Each factor L, cancels with a factor La_b1 .) After passing to a
refinement of the cover, such that all L, become trivializable, and picking
trivializations, fu. is simply a Cech cocycle of degree 2, hence defines a class
in H*(M, u()) = H*(M,Z). The class is independent of the choices made in
this construction, and is called the Dixmier-Douady class of the gerbe.

Note that in practice, it is often not desirable to pass to a refinement.
For example, if M is a connected, oriented 3-manifold, the generator of
H3(M,Z) = Z can be described in terms of the cover U;, U,, where U; is
an open ball around a given point p € M, and U, = M\{p}, using the degree
one line bundle over U; N U, =2 5% x (0, 1).

2.2 BUNDLE GERBES

Bundle gerbes were invented by Murray [24], generalizing the following
construction of line bundles. Let m: X — M be a fiber bundle, or more
generally a surjective submersion. (Different components of X may have
different dimensions.) For each k > 0 let X*! denote the k-fold fiber product
of X with itself. There are k + 1 projections & : X1 — XK = omitting
the ith factor in the fiber product. Suppose we are given a smooth function
y: X1 — U(1), satisfying a cocycle condition §x = 1 where

Ox = OpxOix 105 x: XP — U®).

Then y determines a Hermitian line bundle L — M, with fibers at m € M the
space of all linear maps ¢: X,, = 7~ '(m) — C such that ¢(x) = x(x,x)px).
Given local sections o,: U, — X of X, the pull-backs of x under the maps
(04,0p): U, N U, — X2 give transition functions Y, for the line bundle.
Again, replacing U(1)-valued functions by line bundles in this construction,
one obtains a model for gerbes: A bundle gerbe is given by a line bundle
L — X™ and a trivializing section ¢ of the line bundle 6L = §L®;L™'®@05L
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