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which is always positive since the matrix (HH+HH) is positive semi-definite,
so its trace is > 0. Hence the maps « and @ are well defined. It is clear
that the image of @ is contained in §* C S, because the linearity of the trace
implies that

[trace(D(H))]* = o*(H) [trace p(H)]* = 1.

It is also clear that @ is SO(3,R)-equivariant, since the trace is invariant
under conjugation and 1 is equivariant by Lemma 3.7. These considerations
imply both Lemma 3.8 and the following

LEMMA 3.9. The map ® is an equivariant surjection from P(2) over
S* C S, and it is two-to-one, except over the image of the real matrices in
P(2) where it is one-to-one.

This gives the map in Theorem 3.4 that determines an equivariant diffeo-
morphism between $* and Pz modulo the involution given by conjugation.
To complete the proof of Theorem 3.4 we need to show that @ is invariant
under the involution of P(2) that corresponds to complex conjugation in P%.
For this we notice that if Ly is the complex line in C* which is the image
of H € P(2), and if 0 # (z1,22,23) € Ly, we can associate to H the point in
P%: with projective coordinates [z1,22,z3]. To the matrix H there corresponds
the line with projective coordinates [Z;,Z»,Zz3]. Therefore we have

LEMMA 3.10. The involution jx of P(2) defined by j*(H) = H coincides
with the involution j of P% given by complex conjugation, [zi,z2,23] EN
[21722723]'

Then @ is invariant under this involution, since R(H) = R(H), proving
Theorem 3.4. []

4. SOME APPLICATIONS AND REMARKS

It is interesting to describe explicitly the orbits of the I’ action of
SO(3,R) on S§*, regarded?) as the set of matrices with norm 1 in S. In
fact, the orbits of this action are conjugacy classes (or congruency classes) of
traceless symmetric matrices whose square has trace 1. This is the connection
between our construction and the spherical Tits buildings. Every S € S can

2) This orbit description of $* is also given in [Ma2].
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be diagonalized by an element in SO(3,R), hence every orbit has a unique
representative which is diagonal. So let us assume that S is diagonal with
eigenvalues Aj, Ay, A\3. The two special orbits correspond to the cases when
two eigenvalues coincide. Since A; + Ay + A3 = 0 and )\% + )\% + )\g =1, 1if

two eigenvalues coincide we must have, up to conjugation, A\; = Ay = \}6
S = — el — 2
and A3 = 75> Of Al = A = 76 and A3 = N In both cases the

corresponding matrix is determined by the plane P given by the two equal
eigenvalues, say A; and )\,. Equivalently, this matrix is determined by the
line orthogonal to P, in which we act by the multiplier \; = i% ; the sign
here distinguishes the two orbits. Since SO(3, R) acts transitively on the lines
in R3, it follows that each of these special orbits is a copy of P2, as we know
from [HL]. The general orbits occur when the three eigenvalues are distinct
and the corresponding eigenspaces are orthogonal lines. Since the trace is O,
two eigenvalues determine the third. Hence in each case the transformation
1s determined by the plane P given by two eigenvalues and the line [ in P
given by one of them, together with the corresponding multipliers on [, on
the line orthogonal to [ in P and on the line orthogonal to P in R®. That
i1s, we have a flag (P,]) in R3, together with the multipliers A;, A\, and
\3. Since the action of SO(3,R) is transitive on the planes in R® and on
the lines in each such plane, it follows that each principal orbit, a copy of
the flag manifold F3(2,1), is the orbit of the flag (P,[). The different orbits
correspond to the different multipliers.

We also notice that there is a double fibration, similar to the one considered

in (1.4) above:
F32, 1

4.1) / X
Py Py

where m(P,l) = [ and m(P,l) = P. We can form the corresponding
double mapping cylinder (F3(2, 1) x [0, 1])/ ~, where ~ identifies a point
((Po, 1), 0) € (F3(2,1) x {0} ) with the point m1(Po,lo) = lp € Pg, and a
point ((P1,1),1) € (F*(2,1) x {1}) with the point m,(Py,l,) = Py € Pj. We
obtain S*.

The double fibration given by (1.4) in this dimension descends to (4.1)
by conjugation. By the previous discussion, the image of Q in S$* is
the copy of Pg which is the orbit of the diagonal matrix with eigen-

values {-%, —%, i} while IT is taken diffeomorphically into the orbit

V6
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of {i Ly =2 }
V6 Ve V6

Since the action of SO(3,R) in $* is by isometries and is transitive
on each orbit, the principal orbits are at constant distance from each of
these exceptional orbits M; = Pi and M, = P%, i.e. they are “parallel”. In
other words, as in Section 2, the principal orbits are the level sets of the
function f: S* — R given by f(x) = (d(x,M;))* (or the level sets of the
function g(x) = (d(x,M>))?*). Both f and g are smooth Bott-Morse functions
(cf. [DR]).

The fixed-point free involution on $* given by t:A € S = —A € S
commutes with our SO(3,R) action and therefore it takes SO(3,R)-orbits
into orbits. The quotient $*/¢ is the real projective space Py, equipped with
an isometric SO(3, R)-action. The two exceptional orbits M; and M, on S
are identified by .. Thus we have only one exceptional orbit for the action
of SO(3,R) on P§. The orbit N of the matrix in S* which corresponds
to the matrix in S whose eigenvalues are {——\}—5,0,%} is the manifold

consisting of points such that d(x,M;) = d(x,M,). Then, N 1is invariant under
. and separates S* into two regions which are interchanged by ¢ (i.e. N is an
“equator” for the orientation-reversing involution ¢). The orientable 3-manifold
N is the flag manifold described earlier, but it can also be described as the
set of ordered pairs (I;,l) of non-oriented lines of R® which are mutually
orthogonal. These lines are the eigenspaces corresponding to the eigenvalues

—% and %, respectively.

The restriction of ¢ to N is the orientation-preserving and fixed-point free
involution given by (I, L) — (l,/;). Let m denote the double covering map
from S* to Py = S*/u. Let 7(M) = w(M,) :== M = P% and 7(N) := N. The
manifold N is diffeomorphic to SO(3,R)/D,, where D, is the group of order
8 of isometries of the square. This is because SO(3,R) acts transitively on the
set of non-oriented pairs {I;,l,} of lines in R® which are mutually orthogonal
and the 1sotropy group is precisely D4. Therefore N is diffeomorphic to
SUQ)/Dy = §*/Dy, where D, is the binary dihedral group of order 16,
ie. Dy = ¢~ 1(Ds) where ¢: S® =2 SUQR) — SO@3,R) is the canonical
epimorphism.

The embedding Py = M C P is exactly the embedding given by the
Veronese embedding P — S*, followed by the canonical projection from
§* into Py (see [HL]). We know that S*\ (M| U M,) is diffeomorphic to
N xR, and the restriction of the involution ¢ to S*\ (M;UM>) is conjugate to
the involution J of N x R given by ((I},5),1) — (b, 1), —1). Therefore the
quotient (N x R)/J is diffeomorphic to the total space of the non-orientable
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line bundle over N. Summarizing, we have the following

COROLLARY 4.2. Let Py & M C Py be the embedding induced by the
classical Veronese embedding P — S*. Then Py \ M is diffeomorphic to the
total space of the non-orientable real line bundle over SU(2)/Dy = S°/Dj.
In particular the fundamental group of Py \ M is the binary dihedral group
of order 16.

Let us now recall that there is a remarkable fibre bundle 7: P& — $* with
fibre Pg, called the twistor fibration, or also the Calabi-Penrose fibration (we
refer to [Sa, SV] for details). The fibres are called the twistor lines. There
are several equivalent ways to construct this fibration. The standard way
is to think of P& as being the homogeneous space SO(5,R)/U(2), which
fibres over SO(5,R)/ SO4,R) =2 $* with fibre SO(4,R)/U(2) = $* = P.. A
more geometric way of describing this twistor fibration is to consider S* as
being the quaternionic projective line P}H, of right quaternionic lines in the
quaternionic plane #H? (regarded as a 2-dimensional right H-module). That
is, for q := (q1,¢92) € H?> (q # (0,0)), the right quaternionic line passing
through ¢ is the linear space

Ry ={(@1\ 2N | A€ H}.

We can identify #?> with C* via the R-linear map given by (q1,¢2)
(z1,22,23,24), Where g1 = z1 + 20§ = x1 + Xl +x3j + x4k and g = 23 +z4j =
v1 + y2i + y3j + v4k. In this notation i, j, k denote the standard quaternionic
units, 73 = x1 + xod, 20 = x3 + x4i, 73 = y1 + yoi and z4 = y3 + yq4i.

Under this identification each right quaternionic line is invariant under
right multiplication by i. Hence such a line is canonically isomorphic to C2.
If we think of P% as being the space of complex lines in C*, then there is
an obvious map m: P{, — $*, whose fibre over a point H € P;, is the space
of complex lines in the given right quaternionic line H = C?; thus the fibre
is Pg.

The group Conf(S*) of orientation preserving conformal automorphisms
of $* is isomorphic to PSL(2,H), the projectivization of the group of 2 x 2,
invertible, quaternionic matrices. This is naturally a subgroup of PSL(4,C),
since every quaternion corresponds to a couple of complex numbers. Hence
Conf_(S*) has a canonical lifting to a group of holomorphic transformations
of P2, carrying twistor lines into twistor lines.

Let us split (differentiably) the tangent bundle of P} into a horizontal sub-
bundle and a “vertical” sub-bundle (the bundle tangent to the twistor fibres),
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via the Levi-Civita connexion of the metric. Since the lifting of Conf(S*)
permutes the twistor lines, this action on TPg preserves the decomposition into
horizontal and vertical sub-bundles. By [SV], the action on the vertical sub-
bundle is by isometries with respect to the Fubini-Study metric (which is just
the standard metric on S?). We remark that the horizontal bundle is a holomor-
phic complex sub-bundle of rank two of the complex tangent bundle of P,
On this sub-bundle, the action is conformal. However, the group SO(5,R) is a
subgroup of Conf_(S*) and, by construction, its induced action on the horizon-
tal sub-bundle is by isometries. Thus we have an isometric action:of SO(5, R)
on P, with respect to the Fubini-Study metric, which restricts to an isometric
action of SO(3,R) on P, via the representation I' of this group in SO(5, R)
discussed earlier. We denote this latter action of SO(3,R) on P% by T.

We notice that the special orbits of the SO(3,R)-action on S* give rise
to the special orbits in P}, each being diffeomorphic to P%. There is one
such orbit for each point in the twistor line over a point in the corresponding
special orbit in $*. Since the twistor bundle is trivial when restricted to any
proper subset of $*, it follows that the set of all special orbits of each type
is diffeomorphic to Pg x P&. Similar remarks apply to the principal orbits.
Moreover, by [HL], each special orbit is a minimal submanifold of P2, and
so is their product Pg x P¢ since the projection Pg — S* is a harmonic map
which is a Riemannian fibration (i.e. it is transversally isometric), by [EL]
and [EV; 7.9]. Thus we have

THEOREM 4.3. The action T of SO3,R) on P% is such that:

(1) The action is by elements of PSU(4), i.e. by isometries of P% that
permute the twistor lines, sending each twistor line isometrically onto its
image. '

(2) There are two exceptional types of orbits, each of which is diffeomorphic
to Pg. If we denote by K| and K, the union of orbits of each of these two
types, then both K, and K, are diffeomorphic to P%( X Pé. Furthermore, K;
and K, are minimally embedded in P%.

(3) The principal orbits are diffeomorphic to F3(2,1). Hence the action
has cohomogeneity 3.

(4) The functions hi: Pl — R and hy: Pt — R, given by hi(Z) =
(d(Z,K)))? and hy(Z) = (d(Z,K>))?, are both Bott-Morse functions with
critical set K1 UK,.

(5) The space of orbits is S* x [0, 1].
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We may now consider the Hopf fibration 7: S’ — S* and we identify
R® =2 742 in the obvious way.
The group SU(2) consists of all 2 x 2 complex matrices of the form

-2 2
Sp(1) of unit quaternions by mapping each such matrix to the unit quaternion

u = z1 + 20j. Hence SU(2) acts by the right on H? = R® by the map
((q1,92),w) — (q1u, qou), for each u € Sp(1) and (g1,q2) € H?. This action
leaves invariant each right line R, (¢ = (¢1,92)) and it acts as an isometry
on this line.

( . Z2> with determinant 1. This group can be identified with the group

On the other hand, each complex number is a quaternion, so each matrix

in SU(2) can be regarded as a 2 x 2 quaternionic matrix in GL(2,H), the

group of all invertible 2 X 2 quaternionic matrices A = <Z Z) . This group

acts on H? by the left according to the formula
q = (q1,92) = (aqy + bgz, cq1 + dqp) = A(g),

and induces the aforementioned action of P SL(2,7) on P%Lt >~ G4
We thus have an action of SU(2) x Sp(1) on R® = #? by the formula

((g,w),(q1,92)) — (agqiu + byqou, cqqi1u + dyqou)

for each g = <Zzg Zg) in SU(2). This action induces a natural action
g Yy

T: (SUQ) x SUQ)) x §7 — §7

on the sphere S, and this action is a lifting of the action I" considered in
Section 3, i.e. the following diagram is commutative :

(SU®) x SUQR)) x §7 —L &
fxﬁl ﬁl
SOB,R) x &* I & §*

where f(g,u) = ¢(g), ¢ being the canonical epimorphism from SU(2) to
SO(@3,R)). It is clear that I'((—Id, —1),x) = x for all x € §7, so I' actually
descends to an action of

SO®4) & SU(2) x Sp(1)/(Z/2Z) ,»

on S7. We have
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THEOREM 4.4. This SO(4) action on S satisfies :

(1) It is a hyperpolar isometric action of cohomogeneity 1, with space of
orbits the interval [0, ].

(2) The two exceptional orbits are both diffeomorphic to Pg X S? and both
are minimally embedded in S’ .

(3) The principal orbits are diffeomorphic to F3(2,1) x S3.

(4) The square of the distance functions to the exceptional orbits are both
Bott-Morse functions.

(5) The union of the two exceptional orbits, both copies of Pg x S°, is the
Spanier-Whitehead dual of one principal orbit F3(2,1) x S°.

We notice that the action of SO(n + 1) on C"! considered in Section 2
also provides, when n = 3, an isometric action of cohomogeneity 1 of SO(4)
on S7. However, in this case the two special orbits are the inverse images
of the quadric Q and the real projective space IT = P under the projection
S7 — P¢. So this action is not equivalent to the “twistorial” one given by
Theorem 4.4.
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