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46 P. ETINGOF AND E. STRICKLAND

We want to study the stationary Schrödinger equation:

(3) Hiß À £ C

As in the classical case, it is difficult to say anything explicit about
solutions of this equation for a general Schrödinger operator H, but for the

Calogero-Moser operator the situation is much better.

DEFINITION 2.1. A quantum integral of H is a differential operator M
such that

0.

We are going to show that there are many quantum integrals of H, namely
that there are n commuting algebraically independent quantum integrals

Mi,... ,Mn of H. By definition, this means that the quantum Calogero-Moser
system is completely integrable.

Once we have found M\,..., Mn, observe that for fixed constants

/ii,... ,/i„, the space of solutions of the system

' M\ip /ii-0

v
Mnip

is clearly stable under H. We will see that this space is in fact finite
dimensional. Therefore, the operators Mt allow one to reduce the problem of
solving the partial differential equation Hip Xtp to that of solving a system
of ordinary linear differential equations. This phenomenon is called quantum
complete integrability.

2.4 The algebra of differential-reflection operators

We are now going to explain how to find quantum integrals for H, using
the Dunkl-Cherednik method.

First let us fix some notation. Given a smooth affine variety X, we will
denote by V(X) the ring of differential operators on X. We are going
to consider the case in which X is the open set U in 1} which is the

complement of the divisor of the equation ö(x) := ELex^Cr)- Clearly

V(U) V(m/S(x)].

LEMMA 2.2. An element of V(U) is completely determined by its action

on C [U]wC [U/W]-
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Proof. Recall that the quotient map tt : U -A U/W is finite and unramified.

This implies that

V(U) C[U] ®c[U/W] V(U/W).

From this we obtain that if P G T>(U) is such that Pf — 0 for all/ G C[U/W],
then P — 0.

We also have the operators on C[U] given by the action of W. We will
denote by A the algebra of operators on U generated by V(U) and W, and

call it the algebra of differential-reflection operators. The action of W on U

induces an action on V(U), so that the subalgebra V(U) C A is preserved

by conjugation by elements of W. We have:

PROPOSITION 2.3. A V(U) x W, i.e. every element in A G A can be

uniquely written as a linear combination

a pw
w£W

with Pw G V{U).

Proof. The fact that every element in A can be expressed as a linear
combination ^2wew Pww is clear. To show that such an expression is unique,
assume J2weWPww 0- Take / G C[U] such that wf ^ uf for all w ^ u

in W, and multiply the operator ffPww on the right by the operator of
multiplication by the function fl, i > 0. Then we get

y2Pw° cf)'w pww °/' ° •

wClW wEW

Applying both sides of this equation to a function g G C[U/W] we have

52(pw°wf)g o-
w£W

Thus by Lemma 2.2, °wf 0 for all i. Therefore, by Vander-
monde's determinant formula, Pw o Y[w^u{wf - uf) 0 and hence Pw 0,
for all w G W, as desired.

Take A G A and write
a pw

w<E.W

We set m(A) T>(U). Notice that if / is a W-invariant function,
then clearly A(J) m(A)(f) and that, by what we have seen in Lemma 2.2,
m(A) is completely determined by its action on invariant functions.
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In general, m is not a homomorphism. However :

PROPOSITION 2.4. Let Aw C A denote the subalgebra of elements

invariant under conjugation by W. Then the restriction of m to Aw is

an algebra homomorphism.

Proof If A G Aw, then clearly m(A) is IP-invariant. Now if we
take A,B e Aw and / a IP-invariant function we have that B(f) is also

IP-invariant. So

m(AB)(f) (AB)(f) A(B(f)) A(m(B)(f)) m(A)(m(B)(f)).

Thus m(AB) and m(A)m(B) coincide on IP-invariant functions and hence

coincide.

2.5 Dunkl operators and symmetric quantum integrals
In this subsection we will construct quantum integrals of the Calogero-

Moser operator. This construction is due to Heckman [He] and is based on
the Dunkl operators, introduced in [Du].

Fix a IP-invariant function c: 2 -» C such that ßs cs(cs + 1) for each

s G X. Set öc := ELex and define

L ôc(x)HSc(x).
Then an easy computation shows that

where, for a vector y G I), the symbol dy denotes, as usual, the partial
derivative in the y direction (notice that using the scalar product we are

viewing as as a vector in f) orthogonal to the hyperplane fixed by 5").

From now on we will work with L instead of H and study the eigenvalue

problem

(4) Lf \f.
It is clear that f is a solution of this equation if and only if 8c(x)~lrf is a

solution of (3).

Since for any s G S and / G C[f)] we have that f{sx) — fix) is divisible

by oy(x), the operator

-F-(S _ 1) g
asW

maps C[tj] to itself.
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