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50 P. ETINGOF AND E. STRICKLAND

d; being the degrees of basic W-invariants, we obtain a polynomial ring of
commuting differential operators in D(U). Given g € Clqy, ..., q,] we will
denote by L, the corresponding differential operator. We may assume that
g1 = > ., ¥7 so that L = L, . Thus for every q € Clgi,...,qal, L, is a
quantum integral of the quantum Calogero-Moser system. In particular, the
operators L, ,...,L, are n algebraically independent pairwise commuting
quantum integrals.

Now the eigenvalue problem (4) may be replaced by
L,y = At

for p € Clgi,...,9,], where the assignment p — X, is an algebra
homomorphism Cig,...,q,] — C.

In other words, we may say that since Clgi,...,q,] = C[h*/W] =
C[h/W], for every point k € h/W, we have the eigenvalue problem

S) Ly = p(k)p .

PROPOSITION 2.8. Near a generic point xo € by, the system Ly = p(k)y
has a space of solutions of dimension |W|.

Proof. The proposition follows easily from the fact that the symbols of
L, are g;(0), and that Cly,...,y,] is a free module over Clg,...,g,] of
rank |[W|. [

2.6 ADDITIONAL INTEGRALS FOR INTEGER VALUED c

If ¢, ¢ Z, the analysis of the solutions of the equations L,y = p(k)i) is
rather difficult (see [HO]). However, in the case c: ¥ — Z, the system can be
simplified. Let us consider this case. First remark that, since §; = ¢(c;+1), by
changing c; to —1 — ¢, if necessary, we may assume that ¢ is non-negative.
So we will assume that ¢ takes non-negative integral values and we will
denote it by m.

System (5) can be further simplified, if we can find a differential
operator M (not a polynomial of L, ,...,L, ) such that [M,L,] = 0 for
all p € Clq,...,q,]. Then the operator M will act on the space of solutions
of (5), hopefully with distinct eigenvalues. So if p is such an eigenvalue, the
system

{Lp¢=p<k>¢
My = pi
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will have a one dimensional space of solutions and we can find the unique
up to scaling solution ¢ using Euler’s formula.

Such an M exists if and only if ¢ = m has integer values. Namely, we will
see that one can extend the homomorphism Clgi, ..., ¢,] — D(U) mapping
q — L, to the ring of m-quasi-invariants Oy, .

We start by remarking that under some natural homogeneity assumptions,
if such an extension exists, it is unique.

PROPOSITION 2.9. 1) Assume that g € Clyy,...,y.] is a homogeneous

polynomial of degree d. If there exists a differential operator M, with
coefficients in C(h), of the form

M, = q(0y,,...,0,,) + Lo.t.

such that [M,,L] =0, whose homogeneity degree is —d, then M, is unique.

2) Let Clqi,...,q.0 € B C Clyy,...,ya] be a graded ring. Assume that
we have a linear map M: B — D(U) such that, if g € B is homogeneous of
degree d, then [M,,L] =0, M, has homogeneity degree —d, and

M, = q(0y,,...,0y,) + Lo.t.
Then M is a ring homomorphism and M, = L, for all g € Clqy,...,qx].

Proof. 1) If there exist two different operators M, and Mé] with these
properties, take M, — M(’]. This operator has degree of homogeneity —d, but
order smaller than d. Therefore, its symbol S(x,y) is not a polynomial. On
the other hand, since the symbol of L is Y y7, we get that [L, M, —M,] =0
implies {>_y?,S(x,y)} = 0. Write S in the form K(x,y)/H(x) with K is a
polynomial, and H(x) a homogeneous polynomial of positive degree ¢ (we
assume that K(x,y) and H(x) have no common irreducible factors). Then

B ) > yiKe (G, H @) — Y yiH (0K (x, )
0'— {Zyl,S(X,y)}‘z H(X)2 P

Since Y :_, x;Hy(x) = tH(x), we have >  yiH,(0)K(x,y) # 0. So H(x)
must divide this polynomial and, by our assumptions, this implies that it must
divide the polynomial » ., y;H,(x) whose degree in x is ¢ — 1. This is a
contradiction.

2) Let g,p € B be two homogeneous elements. Then M,M, and M, both
satisfy the same homogeneity assumptions. Hence they are equal by 1).

Finally if ¢ € Clqy,...,g.], both M, and L, satisfy the same homogeneity
assumptions. Hence they are equal by 1). [
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The required extension to the ring of m-quasi-invariants is then provided
by the following

THEOREM 2.10 ([CV1, CV2]). Let ¢ = m: X — Zy. The following
two conditions are equivalent for a homogeneous polynomial g € C[h*] of
degree d.

1) There exists a differential operator
L, =4q(0y,,...,0,,)+ lo.t

of homogeneity degree —d, such that [L,, L] = 0.
2) q is an m-quasi-invariant homogeneous of degree d.

Using this, we can extend system (5) to the system

(6) Lyp =p(k)y, p€Qm, keSpecQy=Xn.

(Recall that, as a set, X,, = h.) Near a generic point xy € b, system (6)
has a one dimensional space of solutions, thus there exists a unique up to
scaling solution (k, x), which can be expressed in elementary functions. This
solution is called the Baker-Akhiezer function, and has the form

Wk, x) = P(k,x) ™

with P(k,x) a polynomial of the form §(x)6(k) + Lo.t. and e*® denotes the
exponential function computed in the scalar product (k,x). Furthermore, it
can be shown that 1 (k,x) = ¥(x, k) (see [CV1, CV2, FV]).

These results motivate the following terminology. The variety X,, is called
the spectral variety of the Calogero-Moser system for the multiplicity function
m, and Q,, is called the spectral ring of this system.

2.7 AN EXAMPLE

EXAMPLE 2.11. Let W=12Z/2, h = C, m = 1. As we have seen, Oy
has a basis given by the monomials {x*} U {x**3}, i > 0. Let us set for
such a monomial, L, = L,, and 0 = %. Then we have

2 3 3
Li=1, L,=8-20, Ls3=0"-=0"+50.
X X X

As for the others, Ly, = Lg, Ltz = LéL3. (Note that L; is not defined). The
system (6) in this case 1s

2p// _ %w/ - kzw’
X

1 3 3 '
W =2y W =Ry,
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