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340 - M. QUEFFELEC ET O. RAMARE

d’ou I'on tire
Qire(x) = Po(T*0)Qk—1(x) + Qe(T* 1) Q%)
d’ot I’encadrement, puisque P; < (; pour tout j,

©) [ < Ok+-0(x) <5
T Qu(T*x)Q(x) —

En nous souvenant que P;(x) et Q;(x) ne dépendent que des j premiers
quotients partiels de x, nous avons montré

LEMME 2.3. Si tous les a; sont au moins égaux a 1, la différence

Log Qxye(ay, . . ., akve) — Log Oxlay, . . . ,ar) — Log Qu(ak+1, - - -, Qkte)

est en valeur absolue inférieure a Log?2.

3. DIMENSION DE HAUSDORFF

Les ensembles F(A) sont tous de mesure de Lebesgue nulle, mais de
dimension de Hausdorff > 0. Good [4] a montré le résultat suivant:

THEOREME 3.1. Soit A un ensemble fini d’entiers > 0. Soit m > 1. Soit
am, A > 0 la solution en o de

-2
Z Z Qm(al,az,...,am) “=1.
alEA amEA

Alors la limite de o, o4 quand m tend vers 'infini existe et vaut la dimension
de Hausdorff de F(A) muni de la métrique induite par la distance sur R.

L]

En fait, la preuve qui mene a ce résultat est tres instructive. En notant

@)=Y ... > Owlai,a,...,an) """

amEeA an€A

nous constatons en utilisant (6) que %, ¢(a) < 2, (@)Zp(ev). Par ailleurs X, ()
décroit en o et par conséquent, si X, (aq) > 1, alors oy, 4 > . Or

Sala) > N™Hmap e A"

ou F,, est le m-ieme nombre de Fibonacci. Nous souhaitons donc avoir

1
—2(LogN + - Log F,,)a + Log|A| > 0
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ce qui nous garantit que

Log | A]
2(Log N + Log 1—+§£)

Cette minoration nous montre en particulier que cette dimension est strictement
positive.

Notons dans 1’autre sens que d = dimy, F(A) < 1/2 pour certains alphabets
A, par exemple A = {1,4}. Cela résulte de la remarque suivante: s’il existe
des m arbitrairement grands pour lesquels %,(c) < 1, alors o > d; dans le
cas contraire, en effet, puisque lim, o, = d, @ < oy et Zp(a) > Zp(ay,) =1
pour m assez grand. Par ailleurs dés que %,(a) < 1 pour un m fix€, nous
avons Xy,(a) < 1 pour tout k¥ > 1. En prenant m = 6 dans I’exemple
précédent, nous obtenons alors d < 0.492.

4. UNE MESURE SPECIALE

Dans la construction de la mesure qui nous intéresse, nous allons éliminer
du support les points pour lesquels Log O, est trop loin de sa valeur moyenne,
auquel cas les deux structures considérées sur F(A) seront vraiment similaires.

Soit § < dimy, F(A). Le théoreme 3.1 et la définition de la dimension de
Hausdorff nous assurent que

lim %,(0) = lim Z Z Omlai,a, . ..,am) " %° = 4+00;

m— o0 m—o0o
(ZIEA amEA

nous pouvons trouver m assez grand pour que X,(6) > 8. Fixons provisoire-
ment m ainsi et regardons F(A) comme formé a partir des blocs A™.

Nous munissons le bloc A™ de la mesure de probabilité discréte v, = Um,§
définie par

Un({@1, ..., am}) = Om(ar, aa, . . . ,apn) "2 /Z0(5).

Soit alors mo,(d) la moyenne de Log Q,,(ay, as, .. ., a,) pour cette mesure.
Comme

(7)  Log Qu(ai,az,...,am) > LogQu(1,1,...,1) > (m — 1) Log V2

nous avons mo,(8) > (m — 1)Log+/2.
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