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58 P. ETINGOF AND E. STRICKLAND

3.4 THE CHEREDNIK ALGEBRA

Let us now return to the algebra A of operators on U generated by D(U)
and W. This algebra contains the Dunkl operators

D, = 8y+ch
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LEMMA 3.10. The following relations hold :

[xi)xj] — [DXNDXJ'] - 07 VI S l7.] S n

Dyl = b5+ 3 e 200 gy < iy
= (0, Cts)

wxw ™! = w(x), wDyw_1 =Dyyy, YweW,xebh*, yeh.

Proof. The proof is an easy computation, except for the relations
[Dy,, D] = 0, which follow from Theorem 2.6.  []

This lemma motivates the following definition.

DEFINITION 3.11 (see e.g. [EG]). The Cherednik algebra H, 1s an
associative algebra with generators x;,y;,i = 1,...,n, and w € W, with
defining relations

[xi:xj] = [ylayj] = 07 V1 < la] <n
i, %] = 6 + Z N (i, o) (x5, )

ex (0, ag)

S, V1 SlL] _<_7’l

wrw™! = w@), wyw™ = w), wew =ww, Yw,w €W, x€h*, yeb.

This algebra was introduced by Cherednik as a rational limit of his
double affine Hecke algebra defined in [Ch]. Notice that if ¢ = 0 then
Hy = D(h) x C[W].

Lemma 3.10 implies that the algebra H, is equipped with a homomorphism
¢: H. — A, given by w — w, x; = xi, ¥i — Dy,

Cherednik proved the following theorem.

THEOREM 3.12 (Poincaré-Birkhoff-Witt theorem). The multiplication map
p: Clhl® Clh*] ® C[W] — H.

given by u(f(x) ® g(y) @ w) = f(x) gy)w is an isomorphism of vector spaces.
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Proof. 1t is easy to see that the map p is surjective. Thus, we only have
to show that it is injective. In other words, we need to show that monomials
x’f ...xf;y{‘ . yiw are linearly independent in H,.. To do this, it suffices to
show that the images of these monomials under the homomorphism ¢, i.e.
xif x;D!C} ...D){,’;w, are linearly independent.

Given an element A € A, writing A=) . P,w with P, € D(U) we
define the order of A, ordA, as the maximum of the orders of the P, ’s.
Notice that ordAB <ordA+ordB. We now remark that for any sequence of
non negative indices (iy,...,i,),

Dl ---Dir =i ... 9 4 Lout.

Indeed this is true for D,,. We proceed by induction on r =i +---+1i,. We
can clearly assume i; > 0, so by induction,

Dy Dy = 0y 4 Lot )02+ 0 + Lot) = 1 -+ O + Lo.t.

From this we deduce that for any pair of multiindices I = (iy,...,i,),
J = (i,.- ), w € W, setting x; = x;""---x,", D; = Di ---Dj",
0y =04l --- 0}, we have

xiDyw = x;0;w + lo.t.

Using this and the linear independence of the elements x;0;w, it is immediate

to conclude that the elements x;D;w are linearly independent, proving our
claim. [

REMARK 1. We see that the homomorphism ¢ identifies H. with the
subalgebra of A generated by C[h], the Dunkl operators D,, yeh and W.

REMARK 2. Another way to state the PBW theorem is the following. Let
F* be a filtration on H, defined by deg(x;) = deg(y;) = 1, deg(w) = 0. Then
we have a natural surjective mapping from C[h x h*] x W to the associated

graded algebra gr(H.). The PBW theorem claims that this map 1is in fact an
isomorphism.

3.5 THE SPHERICAL SUBALGEBRA

Let us now introduce the idempotent

1
e:—“—/ZwGC[W].
wew
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