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ENDOMORPHISMES DES VARIETES HOMOGENES

par Serge CANTAT

1. INTRODUCTION

1.1 Par définition, un endomorphisme d’une variété complexe M est
une application holomorphe surjective de M dans elle-méme. La question
principale abordée dans cet article est la suivante:

Quelles sont les variétés complexes compactes qui possedent des endomor-
phismes de degré topologique strictement plus grand que 1 7

En d’autres termes, nous cherchons les variétés compactes munies d’une
application holomorphe surjective et non injective (i.e. non inversible).

Cette question n’est pas neuve. Dans [14], Mikhael Gromov €tudie plusieurs
exemples d’endomorphismes, notamment sur les espaces projectifs et les
surfaces de Hopf, et demande s’il existe des endomorphismes non inversibles
sur les Grassmanniennes. Robert Lazarsfeld étend ce probleme a toute variété
de drapeaux dans [19] et une réponse complete est fournie dans ce cadre par
Kapil H. Paranjape et Vasudevan Srinivas dans [22]. De nombreux résultats
sont également connus pour les variétés projectives de dimension inférieure
ou égale a 3 et pour celles dont le nombre de Picard est €gal a 1 ([25] et [3],
[6], [8]). Nous brosserons un panorama rapide de la situation dans la partie 2.

1.2 La plus grande part de ce texte concerne les variétés complexes
compactes homogenes (kahlériennes ou non). Afin de présenter une version
concise des principaux résultats, introduisons la définition suivante :
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DEFINITION 1.1.  Un endomorphisme f d’une variété complexe compacte
M admet un facteur inversible si les trois conditions suivantes sont réunies:

(1) 1l existe une fibration holomorphe localement triviale 7: M — B a valeurs
dans une variété lisse de dimension non nulle (sauf si M elle-méme est
réduite a un point),

(1) les fibres de 7 sont permutées par f,

(i11) I’endomorphisme fz: B — B induit par f est un automorphisme.

REMARQUE 1.1. Nous verrons a la partie 2 et au paragraphe 4.2 que
de nombreuses situations conduisent a I’existence de facteurs inversibles pour
lesquels 1’automorphisme fz: B — B est la restriction d’une transformation
projective de PV 2 une sous-variété B. Dans ce cas, I’étude de la dynamique
de f est grandement simplifiée.

THEOREME 1.1. Soit - X une variété complexe, connexe, homogéne et
compacte. Si f: X — X est un endomorphisme de X qui n’a pas de facteur
inversible, alors :

(1) X fibre sur un produit d’espaces projectifs Q = P™ x --- X P™ et les
fibres sont des nilvariétés.

(i1) Les fibres de la fibration sont permutées par f, ce qui détermine un
endomorphisme fo: Q — Q.

(ii1) 1l existe des endomorphismes non injectifs f;: P™ — P™ i=1,...,k,
et un entier strictement positif | tels que fé soit ’application diagonale

(fiy -0 Jo)-

La démonstration de ce théoréme repose sur I’invariance de la fibration de
Tits (§4), le résultat de K. H. Paranjape et V. Srinivas mentionné plus haut et
une étude de Jorg Winkelmann concernant les variétés parallélisables. Nous
donnerons au passage une démonstration simplifiée du théoreme de Paranjape
et Srinivas dans un cas particulier. De nombreux exemples sont décrits en
détails dans la partie 5 et ’essentiel de la preuve est présenté dans les parties
3 et 6.

1.3 Dans une derniere partie, nous abordons un probleme légerement
différent qui est motivé par les résultats récents de Jean-Yves Briend et Julien
Duval suivant lesquels tout endomorphisme non inversible de 1’espace projectif
posseéde une unique mesure d’entropie maximale. La méthode employée semble
trés souple et devrait s’appliquer a d’autres familles d’endomorphismes. Encore
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faut-il trouver des exemples. Nous expliquerons que ces exemples doivent
étre cherchés sur des variétés dont la dimension de Kodaira est négative et
montrerons la proposition suivante :

PROPOSITION 1.2. Soit M une variété compacte kihlérienne dont la
dimension de Kodaira est positive ou nulle. Soit f un endomorphisme de
M non inversible. S’il existe une classe de Kdhler (o] telle que f*[c] soit
proportionnelle & [a] alors M est revétue par un tore et f est revétue par
une transformation affine de ce tore.

De surcroit, modulo des conjectures classiques sur les variétés kahlériennes,
il est possible de classer les endomorphismes non inversibles qui ne préservent
pas de fibration lorsque la dimension de Kodaira est positive ou nulle.

1.4 PLAN DU TEXTE. La partie 2 dresse un panorama succinct des idées
de base utiles pour comprendre les variétés complexes compactes possédant
un endomorphisme de degré plus grand que 1. Plusieurs points de vue ne
sont pas abordés, notamment la réduction algébrique, le quotient rationnel
et les arguments relatifs a la structure des groupes fondamentaux de variét€s
kahlériennes, mais des idées proches sont exploitées dans les parties suivantes.

Les parties 3 a 6 concernent la structure des variétés homogenes munies
d’un endomorphisme non inversible. La derniere partie poursuit la partie 2 et
démontre la proposition 1.2. La partie 2 peut donc jouer le le d’introduction
ou de motivation pour les parties 3 a 6, ou pour la partie 7. Puisqu’elle ne
présente que des résultats tres classiques, elle peut étre ignorée par le lecteur
averti.

1.5 REMERCIEMENTS. Je tiens a remercier A. Huckleberry pour son
accueil a I’Université de Bochum et les discussions que nous avons eues autour
du sujet abord€ ici. Les lectures attentives et les remarques des rapporteurs
et des rédacteurs de L’Enseignement Mathématique ont considérablement
amélioré la présentation de cet article. Je les en remercie.

2. ENDOMORPHISMES DES VARIETES COMPLEXES COMPACTES

Dans cette premiere partic nous dressons un panorama rapide des résultats
de base permettant d’aborder la question centrale étudiée dans cet article,
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a savoir: quelles sont les variétés complexes compactes qui possedent un
endomorphisme holomorphe de degré topologique strictement supérieur a 1 ?

2.1 DIMENSION DE KODAIRA

La dimension de Kodaira d’une variété complexe compacte M est un
nombre entier kod(M), éventuellement égal a —oco, qui peut prendre les
valeurs —00,0,1,2,...,dimc(M). Elle est définie de la maniere suivante.

Si L est un fibré en droites holomorphe sur M, H (M ,L) désignera le
C-espace vectoriel constitué des sections holomorphes globales de L. La
dimension de ce C-espace vectoriel est finie.

Soit x un point de M et L, la fibre de L en ce point. L’évaluation des sec-
tions de L au point x détermine une application linéaire 6y : H(M,L) — L.
Cette application est identiquement nulle lorsque toutes les sections globales
de L s’annulent en x; on dit alors que x est un point base de L. Une fois
fixé un isomorphisme de L, avec la droite vectorielle C, 6;  s’interprete
comme une forme linéaire et celle-ci ne dépend du choix de I’'isomorphisme
C ~ L, que par un facteur multiplicatif. En tout point x de M qui n’est pas
un point base de L, on obtient ainsi un élément [0; ] de I’espace projectif
P(H®(M, L)*). Pour les fibrés en droites qui possedent au moins une section
non nulle, ce procédé détermine une application méromorphe

(1) Or: M -—-» P(H'(M, L)*)

dont les points d’indétermination sont contenus dans les points bases de L.

Pour chaque entier strictement positif k, cette construction peut €tre répétée
en remplacant L par la puissance tensorielle Z®*. La dimension de Kodaira-
Iitaka de L est alors définie comme le maximum des dimensions des images

Orex(M) :

(2) kod(M,L) = max {dim¢ (Orex (M) },

en convenant de poser kod(M,L) = —oco si aucune puissance positive de L
ne possede de section non nulle.

La dimension de Kodaira de M, kod(M), est la dimension de Kodaira-
Ilitaka du fibré canonique de M, noté Kjs et défini comme le déterminant
du fibré cotangent de M : Ky = det(T*M). Les sections holomorphes de
Ky sont donc les formes holomorphes de degré maximal. Les applications
méromorphes O := @K/?k sont appelées «applications pluricanoniques ».
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2.2 ACTION D’UN ENDOMORPHISME ET RAMIFICATION

Si f: M — M est une application holomorphe surjective de M, la
transformation f* consistant a prendre l’image réciproque d’une forme
holomorphe par f définit un élément du groupe linéaire GL(HO(M , Km)) .
En notant F la transformation projective associée & f*, on a la relation

(3) Fo® =0;0f.

Cette remarque est valable en remplacant Kj, par ses puissances tensorielles
positives K®% @, par O et F par I’action F; de f sur les sections de K]%k.
Lorsque la dimension de Kodaira de M est strictement positive, il existe ainsi
une fibration méromorphe invariante par tout endomorphisme. L’action sur la
base de la fibration est linéaire: c’est la restriction de Fj; a I’image de ©.
Le théoréme suivant, pour lequel nous renvoyons a [28], § VI, et a [18], §7.6,
se déduit facilement de ce qui vient d’étre dit.

THEOREME 2.1. Soient M une variété complexe compacte dont la di-
mension de Kodaira est positive ou nulle et ©: M --» PHO(M,KS)*),
k > 0, les applications pluricanoniques. Si f est une transformation holomor-
phe surjective de M, il existe une transformation projective périodique Fj de
P(HO(M,K2")*) telle que © of = Fy o 6.

REMARQUE 2.1. Ceci montre que les endomorphismes des variétés com-
plexes compactes dont la dimension de Kodaira est strictement positive se
réduisent a des variétes de dimension inférieure. Les cas intéressants se situent
donc en dimension de Kodaira 0 et —oo. Lorsque la dimension de Kodaira de
M est maximale, i.e. kod(M) = dim¢(M), les fibres génériques de I’application
O, sont finies; par conséquent, tout endomorphisme de M est inversible et
le groupe des automorphismes de M est fini (voir [18], §7).

Si f: M — M est une transformation holomorphe surjective d’une variété
complexe compacte, le diviseur de ramification Ry de f est défini comme
I’ensemble des points au voisinage desquels f n’est pas un difféomorphisme
local sur son image. C’est le lieu d’annulation du jacobien de f, donc Ry est
I'ensemble vide ou un diviseur. Le théoréme suivant montre que Ry est vide
des que la dimension de Kodaira de M est positive ou nulle. La référence

la plus ancienne que je connaisse pour ce résultat est I’article [23] de Klaus
Peters.
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THEOREME 2.2 (K. Peters). Soit M une variété complexe compacte dont
la dimension de Kodaira est positive ou nulle. Toute application holomorphe
surjective de M dans M est un revétement non ramifié.

Démonstration. Supposons que Ry n’est pas vide et fixons une section
non nulle w de K2, pour k positif convenable. L’ image réciproque de w
par I'itéré n®™ de f est une section de Kﬁ’k qui s’annule sur 1’union des
diviseurs effectifs Ry, f~1(Rs), ..., f7""Y(Ry). Puisque f est surjective, on
obtient ainsi des sections du fibré en droites Ko© dont le lieu des zéros
(comptés avec multiplicité) croit indéfiniment. Ceci est impossible.

2.3 FIBRATION D’ ALBANESE

Pour les variétés kahlériennes, il existe une deuxiéme fibration naturelle
invariante par tout endomorphisme : la fibration d’ Albanese. Notons M , Q}W)
le C-espace vectoriel constitué des 1-formes holomorphes globales de M.
Puisque M est supposée kahlérienne, chaque forme holomorphe est fermée.
En particulier, lorsque <y est un lacet de M, I’intégration d’une 1-forme

holomorphe
w / w
gt

ne dépend que de la classe d’homologie [y] € H'(M,Z). La théorie de Hodge
montre que la partie sans torsion de H'(M,Z) se plonge de cette maniére en
un réseau cocompact de H°(M, Qi,)*. Le tore complexe obtenu en quotientant
HO(M , 9}4)* par ce réseau sera noté Alb(M) : c’est la variété¢ d’ Albanese de M.

Choisissons un point base x dans M. Si y est un point de M et w est une
1 -forme fermée, I’intégrale de w entre x et y dépend du chemin d’intégration
choisi, mais les différentes valeurs obtenues coincident modulo 'intégration
de w sur les lacets basés en x. On dispose ainsi d’une application holomorphe

4) ay: M — Alb(M), yr—>/y

pour chaque choix d’un point base x dans M. C’est la fibration d’Albanese
de M. Elle est équivariante sous l’action de tout endomophisme f, 1’action
induite par f sur Alb(M) étant la transformation affine associée a 1’action
de f par image réciproque sur les 1-formes holomorphes (le paramétre de
translation provient du choix du point base x).

Pour trouver des endomorphismes non inversibles qui ne préservent aucune
fibration, on peut donc supposer que la fibration d’Albanese de M est triviale,
c’est-a-dire que ses fibres sont finies ou que I’'image est un point. Dans
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le premier cas, I’existence d’endomorphismes non inversibles ne préservant
aucune fibration force M a étre un tore (voir [28]). Dans le second cas, le
premier groupe d’homologie de M est fini.

2.4  PETITE DIMENSION

Le théoréme d’Hurwitz montre que les courbes qui posseédent des endo-
morphismes de degré plus grand que 1 sont la droite projective et les courbes
elliptiques. Ceci peut étre démontré a I’aide de la remarque 2.1.

Les surfaces qui posseédent des endomorphismes non inversibles ne
préservant aucune fibration doivent étre cherchées parmi celles dont la di-
mension de Kodaira est 0 ou —oo. A coté des tores et du plan projectif on
trouve I’exemple des surfaces toriques; ainsi, la transformation polynomiale
[x:y:z]— [x*:y*: 7?] détermine un endomorphisme du plan projectif qui
se releve au plan projectif éclaté en [0:0: 1]. Les exemples ainsi construits
sur les variétés toriques sont tous conjugués a des endomorphismes du plan
projectif par une transformation birationnelle. Ces trois familles d’exemples
persistent en toute dimension.

D’apres [21], les endomorphismes non inversibles des surfaces kahlériennes
appartiennent tous a 'une de ces trois familles. De surcroit, les fibrations
méromorphes invariantes par des endomorphismes non inversibles deviennent
triviales apres revétement fini (voir [5], [21] et les références qui s’y trouvent).
La situation pour les surfaces est donc bien comprise. Les blocs élémentaires
sont des variétés homogenes.

Pour les variétés projectives de dimension 3 dont la dimension de Kodaira
est positive ou nulle, on dispose également d’une classification. Celle-ci
n’apporte pas de surprise (voir [25]). Le cas kod(M) = —oo est plus
intéressant et plus obscur: Ekaterina Amerik a étudié les endomorphismes
des variétés qui admettent une fibration par des espaces projectifs, ceci en
dimension quelconque [5], mais peu de résultats sont disponibles pour la
situation générale.

2.5 UNE QUESTION PROCHE

Au lieu de regarder les endomorphismes d’une variété X dans elle-
meéme, on peut s’intéresser aux applications surjectives f: X — Y entre
vari€tés de méme dimension. Dans [3], [4], [6], les variétés de Fano, les
quadriques et les variétés projectives avec un nombre de Picard égal a 1
sont traitées. Les méthodes employées ont un corollaire intéressant pour notre
€tude: une hypersurface lisse H de 1’espace projectif PY, N > 2, admet
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un endomorphisme non surjectif si et seulement si H est un plan ou une
quadrique de P? (voir [4] et [8]).

Dans ce texte, nous analysons le cas des espaces homogenes compacts.
Ceci permet de quitter le monde des variétés kihlériennes et de traiter des
exemples significatifs en dimension de Kodaira négative.

3. VARIETES HOMOGENES KAHLERIENNES

Une variété complexe compacte est homogene si le groupe de ses difféo-
morphismes holomorphes agit transitivement sur la variété. Dans ce cas, la
vari€té est isomorphe au quotient d’un groupe de Lie complexe G par un
sous-groupe de Lie complexe fermé H (voir [2]).

Cette partie classe les endomorphismes des variétés complexes compactes
qui sont a la fois kahlériennes et homogenes.

3.1 TORES

Soit V un espace vectoriel complexe de dimension finie n, I" un
réseau de V et A = V/I' le tore associé. Puisque le fibré tangent de A
est trivial, le principe du maximum montre que la différenticlle de tout
endomorphisme f: A — A est constante. Les endomorphismes de A sont
donc les transformations affines de V qui permutent les orbites de I'. Les
homothéties de rapport entier fournissent des exemples explicites mais il existe
quelques exemples nettement plus riches.

EXEMPLE 3.1. Soit A un réseau de la droite complexe C. Pour tout entier
n, A" est un réseau de C" stabilisé par 1’action des endomorphismes linéaires
de C" a coefficients entiers. Ainsi, pour n = 2, la transformation linéaire

4 2
S ;2
induit un endomorphisme de degré topologique 2% sur C?/A2.

3.2 VARIETES DE DRAPEAUX

Le deuxieme type d’exemples est fourni par les variétés de drapeaux,
c’est-a-dire les quotients compacts et lisses S/P ou S est un groupe de Lie
complexe semi-simple et P est un sous-groupe de Lie complexe connexe. Les
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Grassmanniennes et I’espace des k-plans isotropes pour une forme quadratique
ou une forme symplectique sont des exemples de telles variét€s. On retrouve
ainsi tous les espaces homogenes «classiques». On dispose pour ces vari€tés
d’un tres joli théoréme di a Paranjape et Srinivas [22]:

THEOREME 3.1 (K.H. Paranjape et V. Srinivas). Soit X une variété de
drapeaux et f: X — X un endomorphisme. Il existe alors un nombre fini
d’endomorphismes fi: P" — P, i = 1,...,k, et un automorphisme d’une
variété de drapeaux fo: Xo — Xy tels que X soit isomorphe au produit
Xo x P x -« x P™ et l'un des itérés de f coincide avec I’endomorphisme

diagonal (fo,fi,---,fo)-

Lorsque la variété X = S/P est le quotient d’un groupe de Lie simple,
le théoreme montre que tout endomorphisme est un automorphisme, sauf
si X est un espace projectif. En particulier, les quadriques de dimension
d > 3 et les Grassmanniennes qui ne sont pas des espaces projectifs ne
possedent aucun endomorphisme de degré topologique différent de 1. Afin de
présenter quelques-unes des idées qui peuvent étre employées pour démontrer
ce théoreme, nous en donnons une preuve pour G(1,3), la Grassmannienne
des droites de P?. C’est un cas particulier intéressant car il s’agit 4 la fois
d’une quadrique et de la plus petite Grassmannienne qui ne soit pas un espace
projectif.

Démonstration pour G(1,3). Commencons par introduire quelques nota-
tions standards. L’élément d de G(1,3) et la droite d C P* qui lui correspond
seront systématiquement identifiés. Soit py un point et Hy un plan de P3.
On pose alors:

(6) Wa0(po) = {d € G(1,3) | po € d} ,
(7) WI,I(HO) = {d c G(1,3) l dC Ho} .

La classe d’homologie de chacune de ces deux variétés ne dépend pas
du choix de py et de Hp; elle sera donc notée [02,0] (resp. [o1.1]),
sans référence aux choix effectués. Ces deux classes d’homologie forment
une base du Z-module H;(G(1,3),Z) qui est orthonormée pour la forme
d’intersection (voir [13], §1.5). Puisque la classe d’homologie de toute sous-
variét¢ complexe de dimension 2 dans G(1,3) doit couper [02,0] et [o71]
positivement, I’ensemble décrit par ces classes d’homologie coincide avec le
cadran N.[o20] + N. [0} 1].
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LEMME 3.2. Soit S une sous-varié¢té complexe de G(1,3) de dimension 2.
Supposons que cette surface est irréductible et réduite et qu’il existe un entier
m strictement positif tel que [S] = mloy1]. Il existe alors un plan H dans
P? tel que S = Wi 1(H). En particulier, m est égal a 1.

C’est le point-clef: la présence d’une telle classe d’homologie est un
phénomene qui n’apparait évidemment pas pour les espaces projectifs.

Démonstration du lemme. Soit S comme dans 1’énoncé et V(S) la sous-
variété de P3 balayée par les droites de S :

(8) VES)={xeP’|3de S, xed}.

Comme [S] est proportionnelle a [0 1], le nombre d’intersection [S].[o2 o] est
nul, ce qui signifie qu un point générique de P* n’appartient pas a2 V(S). La
variété V(S) est donc une surface, qui est irréductible car S I’est. Pour conclure,
il suffit de remarquer qu’une hypersurface iréductible de P* balayée par une
famille a deux parametres de droites est un plan, puis de poser H = V(S).

Soit f: G(1,3) — G(1,3) un endomorphisme et § son degré topologique :
pour montrer que f est un automorphisme, nous allons montrer que ¢ est
égal a 1.

Notons f, la transformation lin€aire de H4(G(1,3),Z) associée a f. Le
caractere holomorphe de f montre que f. préserve le cadran N.[o;0] +
N.[o1,1]. Mais f, est une similitude de Hy(G(1,3),R) pour la forme
d’intersection, donc f, ou f? est une homothétie. En particulier,

(9) o1l = 0lora].

Si H est un plan générique de P°, la surface (W ;(H)) est une surface
irréductible de G(1,3). D’apres le lemme 3.2, elle coincide donc avec la
surface Wi 1(‘W(H)) associ€ée a un autre plan W(H). Ceci détermine une
application holomorphe ¥: (P%)* — (P%)*.

Montrons que ¥ envoie droite sur droite: si d est une droite de P° et
H est un plan qui contient d, alors W; (H) contient le point de G(1,3)
correspondant a la droite d, et réciproquement; la droite de (P®)* constituée
des plans contenant d est donc envoyée par ¥ sur la droite des plans
contenant f(d).

Puisqu’elle envoie droite sur droite, I’application ¥ est de degré 1. Ceci
entraine immédiatement que f est de degré 1 : I'image réciproque d’un point
d de G(1,3) doit coincider avec la droite ¥~!(d).
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REMARQUE 3.1. La preuve que nous venons de présenter simplifie
légerement les arguments de [22] et a ’avantage d’employer peu d’outils
évolués. La stratégie s’ applique pour toutes les variétés de drapeaux classiques
— i.e. pour les ensembles de sous-espaces vectoriels emboités de C". Par contre,
elle ne s’applique pas pour la quadrique lisse de dimension 3. Pour une preuve
dans le cas général, nous renvoyons le lecteur a [22]; le cas des quadriques
apparait également dans [4].

3.3 CAS GENERAL

D’aprés un théoréeme d’Armand Borel et Reinhold Remmert, toutes les
variétés homogeénes kéhlériennes compactes sont isomorphes au produit d’un
tore T par une variété de drapeaux Q. Puisque la projection de 7T x Q
sur T coincide avec le morphisme d’Albanese, ses fibres sont permutées par
tout endomorphisme. Si f: T x Q — T x Q est une application holomorphe
surjective, on peut donc 1’écrire sous la forme

(10) f(ta CI) — (Cl(f), gt(Q)) )

ou a est un endomorphisme de T et ¢t +— g, est une application holomorphe
a valeurs dans les endomorphismes de Q. Quitte a remplacer f par I'un de
ses itérés, le théoreme 3.1 et la connexité de T permettent de supposer que
g; est a valeurs dans:

(1) les endomorphismes d’un certain degré d’un espace projectif, ou

(11) la composante connexe du groupe d’automorphismes d’une variété de
drapeaux.

Chacun de ces ensembles est égal au complémentaire d’une famille non vide
d’hypersurfaces dans un espace projectif. L’application ¢+~ g, doit donc étre
constante. Nous avons donc démontré la proposition suivante :

PROPOSITION 3.3. Soit T un tore et Q une variété de drapeaux. Les
endomorphismes de T x Q sont tous du type (t,q) — (a(t), g(q)) on a est un
endomorphisme de T et g est un endomorphisme de Q.

En particulier, tous les endomorphismes de ces variétés préservent la

projection sur Q. Il s’agit d’un cas particulier de fibration de Tits. Nous
allons maintenant montrer que cette derniere est toujours invariante.
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4. INVARIANCE DE LA FIBRATION DE TITS

4.1 LA FIBRATION DE TITS

Pour étudier les endomorphismes d’une variété complexe compacte,
I’existence de fibrations invariantes est un atout crucial. Nous avons déja sig-
nal€ les fibrations d’Albanese et pluricanoniques dans la partie 2. Le troisi¢me
exemple est fourni par le processus de réduction algébrique. Il donne naissance
a une fibration dont les fibres sont les sous-variétés sur lesquelles toute fonc-
tion méromorphe est constante. Tout endomorphisme préserve cette fibration;
’action induite sur la base correspond a celle de I’endomorphisme f par com-
position sur le corps des fonctions méromorphes. Dans le cas général, il s’agit
d’une fibration méromorphe (voir [28]) mais pour les variétés homogenes, on
dispose du théoreme suivant ([1], theoreme 6.2):

THEOREME 4.1. Soit X une variété homogene compacte. Il existe une
variété homogene projective Y et une fibration localement triviale p: X — Y
telle que:

(1) Les fibres de p sont parallélisables,

(i) p réalise un isomorphisme entre le corps des fonctions méromorphes
de X et celui de Y,

(ii1) tout endomorphisme de X permute les fibres de p.

D’apres le théoreme de Borel et Remmert, Y est le produit d’une variété
abélienne par une variété de drapeaux. Une fagon de définir la fibration de
Tits est de composer la fibration précédente avec la projection de sa base sur
la variété de drapeaux. Le théoréme précédent et la proposition 3.3 montrent
ainsi que la fibration de Tits est invariante par tout endomorphisme.

PROPOSITION 4.2. La fibration de Tits d’une variété homogene compacte
est invariante par tout endomorphisme.

Pour obtenir ce résultat, nous avons employé une définition quelque peu
inhabituelle de la fibration de Tits. Voici la construction initiale de Jacques
Tits. Soit X = G/H une variété homogéne compacte, avec H un sous-groupe
fermé du groupe de Lie complexe G. Notons H° la composante connexe de
1’élément neutre dans H et N le normalisateur de H°. On peut montrer que
G/N est une variété de drapeaux. On obtient ainsi une fibration de X sur
une variété de drapeaux Q qui s’avere étre la fibration de Tits; en particulier,
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cette construction ne dépend pas de I’écriture de X sous la forme G/H. Les
fibres sont isomorphes au quotient du groupe de Lie complexe L = N JH°
par le sous-groupe discret cocompact I' = H JHY; ce sont donc des variétés
parallélisables connexes. Nous renvoyons le lecteur a [9], [271, [15] et [2]
pour les démonstrations de ces résultats.

VOCABULAIRE. Si X est une variété homogene compacte, les fibres et la
base de la fibration de Tits de X seront appelées fibres de Tits et base de Tits
de X.

4.2 PREMIERE APPLICATION

Soit O la base et F la fibre de la fibration de Tits d’une variété homogene
compacte X. Si f est un endomorphisme de X, il induit un endomorphisme
f de la variété de drapeaux Q. Nous pouvons donc appliquer le théoreme
de Paranjape et Srinivas. S’il apparait un facteur Q = Qp X O; sur lequel
f induit un automorphisme f,: Qo — Qo, la dynamique de f s’appauvrit
considérablement: f, est induite par une transformation linéaire isotope a
I’identité.

Afin de démontrer le théordme 1.1, nous pourrons donc supposer que la
base Q de la fibration de Tits est un produit d’espaces projectifs:

(11) O=P" x---xP™ keN,

et que f agit diagonalement: f = (f;, ...,f;) ot f; € End(P").

Soit ¢ un point de Q et P’ I’espace projectif qui passe par ¢ et est donné
par le j®™ facteur du produit (11). L’image réciproque de la fibration de Tits
par I’injection P’;j — O ne dépend pas de g car X est homogene. On obtient
ainsi une variét€ homogene X; dont la fibration de Tits a des fibres isomorphes
a celles de X et une base isomorphe a P” . Puisque tout endomorphisme d’un
espace projectif admet des points fixes, f induit un endomorphisme de X;.
Nous étudierons donc d’abord les endomorphismes des variétés homogenes
dont la base de Tits est un espace projectif.

5. QUELQUES EXEMPLES

Présentons maintenant quelques exemples qui illustrent 1’invariance de la
fibration de Tits et donnent une petite idée des phénomenes qui peuvent
apparaitre lorsque la variété homogene n’est pas kahlérienne.
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EXEMPLE 5.1. L’exemple le plus simple de variété homogeéne qui ne soit
pas kdhlérienne est la surface de Hopf, obtenue en quotientant C?\ {0} par
les homothéties de rapport \”, n € Z, A étant un nombre complexe non nul.
Cette surface S, est difféomorphe a2 S x S'. Elle fibre sur P', les fibres
étant isomorphes a la courbe elliptique C*/{\).

En voici une seconde construction qui montre directement que cette variété
est homogene. Soit Hy le sous-groupe de SL(2,C) défini par

(12) H,\_—_{<>(\)n )\Z_:n>:n€Z,z€C}.

Le quotient de SL(2,C) par H) est isomorphe a la surface de Hopf S). La
fibration elliptique de S, sur P! coincide avec sa fibration de Tits et provient
de I’inclusion de H, dans le groupe des matrices triangulaires supérieures.

Si P(X,Y) et OQ(X,Y) sont deux polyndmes homogenes de degré d qui
n’ont que ’origine comme zéro commun, la transformation

¢(x7 y) — (P(x7 y)7 Q(x7 y))

passe au quotient en un endomorphisme de degré d° sur la surface de Hopf.
On construit ainsi de nombreux exemples d’endomorphismes; 1’invariance de
la fibration de Tits résulte immédiatement de I’homogénéité de P et Q.

EXEMPLE 5.2. Le deuxieme exemple de vari€ét€s complexes compactes
non kahlériennes est celui donné par Eugenio Calabi et Beno Eckmann dans
[11]. 1 s’agit de variétés de dimension 3 difféomorphes a2 S* x S*. Chacune
des spheéres fibre en cercles sur P! et le produit de ces deux fibrations donne
naissance a une fibration elliptique localement triviale. L’invariant modulaire
de la fibre peut étre fixé de maniere arbitraire lors de la définition de la
structure complexe sur S° x S>. Si cet invariant est égal a T, fous noterons
M., la variété de Calabi-Eckmann correspondante.

Ces variétés peuvent €tre construites de la maniere suivante. Soit V =
(C?\ {0})?. L’action de C sur V donnée par

(13) t4 ((u,0), (x, ) = ((e7u, e?v), (7 7"/?x, ™/ *y))

est fidele dés que le nombre complexe 7 appartient au demi-plan de Poincaré.
L’espace des orbites est alors une variété isomorphe a M, . Cette construction
a I’avantage de montrer directement que M, est homogene et possede de
nombreux endomorphismes. Pour en construire, il suffit en effet d’exhiber des
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transformations holomorphes de V qui permutent les orbites de I’action (13).
Par exemple,

(14) ((,0), (x5, ) = (@ + v, + ), +2°,57)

détermine un endomorphisme de M, dont le degré topologique est €gal a 34,
Il est facile de constater sur cet exemple que la fibration elliptique de
M, sur P! x P! est équivariante: I’endomorphisme permute les fibres et
induit une transformation polynomiale de degré 3 sur chaque P'. C’est une
illustration de I’invariance de la fibration de Tits. L’égalité entre les degrés
des deux endomorphismes de P! illustre un autre phénomene. Notons E. la
fibre elliptique de M, . La suite exacte longue des groupes d’homotopie

15) = m (P xP) = m(E) = mM;) = m (P X P') — -

montre que la simple connexité de M, résulte du caractere surjectif de la
fleche m (P! x P') — m(E,). L’action d’un endomorphisme de P' sur le
second groupe d’homotopie m(P!) ~ Z coincide avec la multipliation par
le degré de I’endomorphisme. Celle d’un endomorphisme holomorphe de E;
sur m(E;) ~ Z? se fait par une similitude dont le rapport o est égal a la
racine carrée du degré topologique. Puisque la suite exacte est équivariante,
il s’ensuit que le degré de I’endomorphisme sur chaque P! est égal & «. En
particulier, tous les endomorphismes de P! x P! ne se relévent pas en des
endomorphismes de M. .

E. Calabi et B. Eckmann construisent des structures complexes similaires
sur §%*1 x §%*1 pour toute paire d’entiers positifs (p,q) (voir [11], [20]).
Une étude analogue a la précédente peut étre effectuée pour toutes ces variétés.

EXEMPLE 5.3. Donnons maintenant un exemple pour lequel les fibres de
Tits sont des nilvari€t€s (et pas des tores). Soit H3(C) le groupe de Heisenberg
constitué des matrices

(16)

OO =
O ==
—_ N

ou x, y et z sont trois nombres complexes. Le quotient de H3(C) par Hs(Z[i])
est une vari€té complexe compacte que nous noterons Ms.

Soit P le sous-groupe de SL(2,C) formé par les matrices triangulaires
sup€rieures. Si 7 appartient a Z[i], on note p, la représentation de P dans
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AutO(M3) déterminée par la translation a gauche par 1’élément

AN R
17) pr (0 a_1>: 01 0
00 I

Puisque «1’image » de p, est dans le centre de #H3(C), il est facile de voir que
p- définit bien une représentation a valeurs dans Aut(M3) et que la variété X
obtenue par suspension de cette représentation au-dessus de P! = SL(2,C)/P
est homogene. La fibration de Tits de X, coincide avec la projection sur P!
et n’est pas triviale. Pour s’en convaincre, il suffit de remarquer que I’image
du second groupe d’homologie de P! dans la fibre M3 est engendrée par la
matrice de parametres x =y =0, z=17.

Si p et g sont deux entiers et f est un endomorphisme de P! de degré
pq, la transformation

1 x z i 1 px pgz
(18) Ju:v, [0 1T y )= (f(Qu:vD, {0 1 gy )
0 0 1 0O O 1

détermine un endomorphisme de X, de degré (pq)’. Tous les endomorphismes
de P! se relevent donc en des endomorphismes de Ms. Les endomorphismes
ainsi construits n’ont pas de facteur inversible.

EXEMPLE 5.4. Donnons maintenant un exemple de variété homogene non
kahlérienne ne possédant pas d’endomorphisme de degré supérieur a 1. Soit
X le quotient de SL(n,C) par un sous-groupe discret cocompact I'. Pour
montrer que tout endomorphisme f: X — X est un automorphisme, utilisons
que X est parallélisable, son fibré cotangent €tant trivialisé par les 1-formes
invariantes par translation a droites sur SL(n, C). L’action de f sur les formes
différentielles induit ainsi un endomorphisme f* de 1’algebre de Lie sl(n, C),
dont le déterminant est égal au degré topologique de f. Tout endomorphisme de
sl(n, C) étant un automorphisme intérieur (voir [16], prop. 1.98), le déterminant
de f* est égal a 1 et f est un automorphisme.

6. EXISTENCE DE FACTEURS INVERSIBLES.

Nous démontrons maintenant le théoreme énoncé dans 1’introduction. Les
idées principales sont déja apparues dans la partie précédente.
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6.1 STRUCTURE DE LA FIBRATION DE TITS

Supposons que la base de la fibration de Tits est un espace projectif P”. La
fibre F' est une variété parallélisable : nous noterons Ly la composante connexe
de I’identité de son groupe d’automorphismes et L son revétement universel. Il
existe un sous-groupe discret cocompact Iy de Ly tel que F = Ly/Ty. L’image
réciproque de I'y par I’application de revétement L — Ly sera notée I.

Si I’on écrit X sous la forme G/H, ou G est un groupe de Lie complexe
simplement connexe agissant holomorphiquement sur X, on récupere un
morphisme p: G — Aut(P") dont I’image S agit transitivement sur P".
En particulier, S coincide avec le groupe PGL(n, C) ou éventuellement avec
le groupe symplectique Sp(n/2,C) si n est pair (voir [2]). Ces groupes sont
simples, ce qui permet d’appliquer le théoréeme de Levi-Malcev et de trouver
une section o:.S — G du morphisme p. Nous noterons encore S I'image
dans G du groupe S.

Fixons un point gy de P™, par exemple celui de coordonnées [1 : 0 : ... : 0],
et notons P le stabilisateur de gy dans S, de sorte que P s’identifie a S/P.
L’action de § sur X (via o: § — G) permute transitivement les fibres de la
fibration de Tits. Nous pouvons donc reconstruire X comme la suspension de
la représentation

(19) P — Aut(F,)" = L,

obtenue par I’action de P sur la fibre F,, au-dessus du point Q. L’action de
P ainsi construite se fait par translation a gauche.
Si § est le groupe spécial linéaire, alors P est (conjugué &)

(20) {(g X) :beC", Ac GL(n,C), a= det(A)—l} :
et lorsque § est le groupe symplectique Sp(g, C),
a b * k x
1) p=l |0 @ xx L AeSplg—1,0C)
0 A

Soit f un endomorphisme de X, f I’endomorphisme induit sur P” et

q un point de P™. Si s est un élément de S qui envoie F, sur o

s1 of détermine un endomorphisme de la fibre F,. Ce dernier ne dépend
du choix de s que modulo P: son action sur les groupes d’homotopies et
d’homologie de F, n’en dépend donc pas. Cette remarque permet de définir
la notion d’endomorphisme agissant par translation, par automorphisme ou
par endomorphisme de degré d dans les fibres.
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6.2 UN THEOREME DE JORG WINKELMANN

Sur une variété parallélisable compacte L/T", les champs de vecteurs
holomorphes globaux sont en correspondance bi-univoque avec les éléments
de I’algebre de Lie [ de L. Tout endomorphisme ¢ de L/I" détermine alors un
endomorphisme d’algebre de Lie ¢, : [ — [ (voir [29]). Si L est simplement
connexe, il existe donc un automorphisme ® de L qui stabilise I' (i.e
O(I) CT') et un élément a de L tel que ¢(g") = a®(g)I".

Puisque ¢, est un morphisme d’algebre de Lie, il préserve le radical
résoluble de [. Ceci permet de trouver une fibration équivariante de L/T" a
valeurs dans S/T” ol § est semi-simple. Puisque tous les endomorphismes
des algebres de Lie simples sont intérieurs, 1’endomorphisme induit sur la
base est un automorphisme et I’un de ses itérés est une translation a gauche.
Ce raisonnement peut &tre poussé un cran plus loin et conduit au théoreme
suivant de J. Winkelmann [29]:

THEOREME 6.1 (J. Winkelmann). Soit F = L/T" une variété complexe
compacte parallélisable et f un endomorphisme holomorphe de F. Si N
désigne le nilradical de L, il existe un automorphisme f': L/NT" — L/NT
qui rend le diagramme suivant commutatif

L/T L . L/T

Wl lﬂ

L/ (NT) —f—/—> L/ (NT) .

Reprenons 1’étude de la fibration de Tits commencée au paragraphe 6.1. Le
théoréme précédent s’applique simultanément a 1’action du groupe parabolique
P et a celle induite par I’endomorphisme f sur les fibres. Nous pouvons donc
énoncer une version fibrée du théoreme de J. Winkelmann. Si*nous notons
L/T la fibre de Tits (ou I' est un réseau du groupe de Lie complexe, connexe
et simplement connexe L), et N le radical nilpotent de L, nous obtenons un
diagramme commutatif de fibrations

morphisme ﬁbré\

X > Y

i |

oo
qui est équivariant sous ’action de f; la vari€té Y est un espace homogene
complexe compact dont la base de Tits est isomorphe a P™ et la fibre a
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L/(NT); cette variété Y est munie d’un endomorphisme fy agissant par
automorphisme dans les fibres.

6.3 ENDOMORPHISMES AGISSANT PAR AUTOMORPHISMES DANS LES FIBRES

PROPOSITION 6.2. Soit X une variété homogene complexe compacte dont
la fibration de Tits a pour base un espace projectif. Si f est un endomorphisme
de degré strictement supérieur & 1 qui agit par automorphisme dans les fibres,
la fibration de Tits est un produit.

Démonstration: premiére étape. Conservons les notations du para-
graphe 6.1 et supposons pour commencer que la fibre de Tits F est le
quotient d’un groupe de Lie semi-simple simplement connexe L. Dans ce cas,
quitte 2 remplacer I’endomorphisme f par 'un de ses itérés, 'action de f
dans les fibres se fait par translation. En particulier, son action sur le groupe
fondamental des fibres est triviale. Le degré de f étant supérieur a 1, I’action
de f sur m(P™) est la multiplication par un entier strictement plus grand
que 1. L’équivariance de la suite exacte

(22) R Wz(Pm) — m(F) = mX) —» m(P") = {O} % .

montre donc que la premiere fleche a une image finie. Quitte a changer X
par un revétement fini, on peut donc supposer que le groupe fondamental de
F s’injecte dans celui de X.

Si nous passons au revétement universel X de X , la fibre de la fibration de
Tits est alors remplacée par le groupe de Lie simplement connexe L et X est
I’espace total d’un fibré principal sous I’action de L par translations a droite.
L’endomorphisme f s’y releve en un morphisme d’espaces fibrés ]7: X=X,
qui est équivariant pour I’action de L par multiplication a droite a la source
et par multiplication a droite apreés composition par un automorphisme de L
au but. On obtient donc un morphisme f au-dessus de f entre deux fibrés
principaux €quivalents. Les classes caractéristiques du fibré principal X doivent
&tre invariantes par f et sont donc nulles, car f agit par multiplication par un
entier positif strictement plus grand que 1 sur chaque espace de cohomologie.
Nous allons employer cette propriété a plusieurs reprises pour montrer que la
fibration de Tits est en fait un produit.

Soit W le fibré vectoriel obtenu en faisant le produit fibré du fibré principal
X par la représentation adjointe de L. Il suffit de montrer que ce fibré vectoriel
est trivial. Par construction, X est un fibré principal obtenu par la suspension
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d’une représentation
(23) p: P—L

ou P est le stabilisateur du point [1: 0 : ... : 0] pour I’action de PGL(m+1, C)
(resp. Sp((m + 1)/2,C)) sur P". Le fibré W est donc un fibré vectoriel
homogene: il est obtenu par suspension de la représentation adyop ou ady
désigne la représentation adjointe de L.

L’endomorphisme f détermine un endomorphisme de W (au-dessus de
f) qui agit par isomorphisme linéaire dans les fibres. L’argument relatif aux
classes caractéristiques du fibré X affirme ainsi que les classes de Chern de
W sont nulles et, en particulier, que sa pente

w
24) (W) = ——r;; (v;)

est nulle. Si V ¢était un sous-faisceau de W de pente u(V) strictement
supérieure a 0, son image réciproque par f” serait de pente d"u(V), ce
qui contredirait ’existence d’une borne supérieure pour les pentes des sous-
faisceaux de W (voir [17], § V.7). Ceci montre que W est un fibré semi-stable
et permet de trouver une décomposition de W en somme directe de sous-

faisceaux
(25) - W= @izl,...,kWi

telle que chaque W; est stable et de pente nulle [24]. I’image réciproque
d’une telle décomposition par f est une nouvelle décomposition de W en
faisceaux stables: par le corollaire 2.8 de [24], chaque f*(Wi) est donc
isomorphe a I'un des W;. Ceci montre que toutes les classes de Chern des
W; sont nulles. Puisque P* est simplement connexe, la nullit¢ des classes de
Chern et la stabilité assurent la trivialité. Les W;, et donc W lui méme, sont
triviaux.

Ceci démontre la proposition lorsque la fibre de Tits est le quotient d’un
groupe de Lie semi-simple par un réseau: la fibration €tant triviale, f admet
un facteur inversible.

Seconde étape. Lorsque L est un groupe de Lie connexe simplement
connexe quelconque, ’argument qui vient d’étre donn€ montre que le fibré
principal associé a sa partie semi-simple est trivial.

Dans la suite exacte (22) nous pouvons donc supposer que 1’image de la
premicre fleche est contenue dans I’intersection de I' avec le radical de L.
On peut donc supposer pendant quelques lignes que L est résoluble.
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Un automorphisme d’un tore agit sur le groupe fondamental Z' en ne
possédant aucune valeur propre entiere strictement plus grande que 1. Plus
généralement, si L est résoluble, il n’existe pas de sous-groupe cyclique infini
A=1{..,a"1,aad,.. .} dans T tel que fu(@) = a’ avec |d] > 1.
L’équivariance de la suite exacte (22) montre alors que I’image de la premiere
fleche est triviale. Comme dans la premicre étape, on peut donc relever la
dynamique au revétement universel de X et supposer que les fibres de la
projection sur P sont isomorphes au groupe de Lie simplement connexe L.

La variété X est obtenue en faisant une suspension a partir d’un morphisme
du groupe parabolique P dans L et la premiere étape permet de supposer que
le morphisme du groupe parabolique P a valeurs dans L est en fait a valeurs
dans le radical résoluble Rad(L) de L.

Supposons pour commencer que P est le stabilisateur de [1 :0: ... : 0]
dans SL(m + 1,C). Un tel morphisme est trivial sur le sous-groupe simple
constitué des matrices de la forme

1 0
(26) (O A) , A €SL(m,C).
Il est donc trivial sur le plus petit sous-groupe distingué contenant cette copie
de SL(m, C) et il est facile d’en déduire que le morphisme factorise a travers
la représentation de P dans C* donnée par

Q27) (‘8‘ Z) — o

Si 'un des poids de la représentation associée est non nul, nous pouvons
construire un fibré en droites f—équivariant de classe de Chern non nulle, ce
qui est impossible. Tous les poids de la représentation sont donc nuls et le
morphisme de P dans L est trivial.

Supposons maintenant que P est le stabilisateur de [1:0:...: 0] dans
le groupe Sp(q,C), avec m+ 1 = 2¢. Dans ce cas, le morphisme de P dans
Rad(L) est trivial sur le sous-groupe de Lie simple

Id 0
28
ou A décrit Sp(g—1, C) et Id est I’élément neutre de SL(2, C). Le morphisme

de P dans Rad(L) est donc trivial sur le plus petit sous-groupe algébrique
distingué qui contient ce groupe. Il transite ainsi par

M a
(29) (0 A>»—>M,
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ou M est une matrice triangulaire supérieure de déterminant 1,

(87 a
(30) M= (o a_1> .

La encore, ’argument sur les classes de Chern permet de conclure que la
représentation est triviale: les matrices M diagonales sont dans le noyau et le
sous-groupe distingué qu’elles engendrent coincide avec le groupe des matrices
triangulaires supérieures.

Nous avons donc montré dans tous les cas que la représentation de P était
triviale, ce qui assure que X est un produit. Le théoréeme est démontré.

EXEMPLE 6.1. Pour les surfaces de Hopf (voir I’exemple 5.1), le
revétement universel coincide avec le fibré tautologique de P' (de fibre C*
et de classe de Chern —1). Cette surface n’a donc aucun endomorphisme
non injectif qui soit de degré 1 dans les fibres. Nous pourrions le montrer
directement en travaillant sur le revétement universel C?\ {0}.

6.4 APPLICATION

Pour démontrer le théoreme 1.1, il suffit maintenant de juxtaposer le
paragraphe 6.2, la proposition 6.2 et le théoreme de Paranjape et Srinivas: si f
est un endomorphisme sans facteur inversible, la base de la fibration de Tits doit
étre un produit d’espaces projectifs et f induit un produit d’endomorphismes
non inversibles, donc la fibre est une nilvariété.

REMARQUE 6.1. Certains endomorphismes de la base IT,P™ ne se relévent
pas en des endomorphismes de X, méme si la fibre de Tits est une nilvariété. Si
I’on suppose que la fibre F est un quotient d’un groupe de Heisenberg H,,, une
condition nécessaire et suffisante est que les endomorphismes f;: P™ — P™
aient tous méme degré pour les indices i tels que la suspension de F au-dessus
de P™ est non triviale. Ce résultat peut €tre obtenu en utilisant les arguments
présentés au cours des exemples 5.2 et 5.3. Nous le laissons en exercice.

7. ENDOMORPHISMES IRREDUCTIBLES

Dans [10], J.-Y. Briend et J. Duval montrent que les endomorphismes
non inversibles de 1’espace projectif possédent tous une unique mesure de
probabilité invariante d’entropie maximale. De plus, cette mesure coincide avec
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la limite, lorsque k tend vers I'infini, des mesures de moyenne sur les points
périodiques de période inférieure a k. Il s’agit d’un résultat particulierement
frappant. De surcroit, il n’est pas nécessaire de supposer que la vari€t€¢ ambiante
M soit un espace projectif pour employer la méthode mise en ceuvre par Briend
et Duval. Les hypotheses essentielles sont que

(1) M soit projective (ou kahlérienne) |

(2) le degré topologique deg(f) de I’endomorphisme majore strictement
les autres valeurs spectrales de la transformation linéaire

obtenue par I’action de f sur I’homologie de M.

Ces deux propriétés sont satisfaites par les endomorphismes de 1’espace
projectif et par les endomorphismes (affines) des tores dont la partie linéaire est
une similitude. La question est: existe-t-il d’autres exemples 7 Nous cherchons
donc en priorité a décrire les endomorphismes qui ne préservent pas de fibration
non triviale.

Nous ne supposerons plus que la variété étudiée est homogene, mais qu’elle
est kahlérienne et que sa dimension de Kodaira est positive ou nulle (cf. §2).

PROPOSITION 7.1.  Soit M une variété kihlérienne compacte de dimension
n dont la dimension de Kodaira est positive ou nulle. Soit f: M — M un
endomorphisme dont le degré topologique deg(f) est strictement plus grand
que 1. Si deg(f) n’appartient pas au spectre de f.: H,_,_1(M,R) —
H,_i,—1(M,R) alors, apres un revétement étale fini de M, ou bien M est
un tore, ou bien f a un facteur inversible (voir la définition 1.1).

Ce résultat montre que pour trouver de nouveaux endomorphismes redeva-
bles de la méthode Briend-Duval il faut chercher parmi les variétés de dimen-
sion de Kodaira négative. A priori, on peut d’ailleurs se contenter d’étudier
celles qui sont rationnellement connexes (voir [12]).

Démonstration. D’apres le théoréeme 2.2, f est un revétement étale de M.
Soit k un entier strictement positif pour lequel K%’k possede une section non
identiquement nulle. Puisque 1’espace des sections holomorphes de Kﬁ’k est
un C-espace vectoriel de dimension finie, il existe une section Q de K&F et
un nombre complexe non nul « tel que

(31) fQ=aQ.

En particulier, le diviseur des zéros de Q est invariant a la fois par f et par

~!; au niveau homologique, ceci se traduit par 1’équation
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(32) J«[(€2)o] = deg(f) [(L2)o].

L’hypothese faite dans I’énoncé montre alors que [()y] est nulle; la forme
Q ne s’annule donc pas et le fibré en droites Kj; est un fibré de torsion (Kg’k
est trivial).

D’apreés un théoreme célebre de Fedor A. Bogomolov (voir [7], partie I),
la variété M posseéde un revetement fini M’ qui est le produit d’un tore A
par une variété simplement connexe Q. La projection sur A coincide avec
le morphisme d’Albanese et détermine donc une fibration f-équivariante. La
variété Q est simplement connexe et sa dimension de Kodaira est nulle, donc
tout endomorphisme de Q est un automorphisme (¢f. thm. 2.2); en outre,
le groupe des automorphismes de Q est discret [7]. L’argument donné pour
démontrer la proposition 3.3 montre alors que f agit diagonalement sur le
produit M’ = A x Q et que la projection de M’ sur Q fournit un facteur
inversible de f. '

REMARQUE 7.1. Nous pensons que 1’hypothese reliant le degré de f au
spectre de f. n’est pas essentielle. En effet, supposons que la dimension de
Kodaira de M est nulle, car sinon on peut réduire le probleme a 1’aide du
théoréeme 2.1. Si f ne préserve aucune fibration, nous pouvons supposer que
la fibration d’Albanese de M est triviale (c¢f. §2.3). Dans ce cas, Frédéric
Campana conjecture que le groupe fondamental de M est fini. Le revétement
universel de M serait alors une variété complexe compacte simplement connexe
dont la dimension de Kodaira est nulle: tous ses endomorphismes sont donc
des automorphismes (cf. les arguments relatifs a Q ci-dessus).

PROPOSITION 7.2. Soit f: M — M un endomorphisme non inversible d’une
variété kahlérienne compacte. Supposons que la dimension de Kodaira de M
est positive ou nulle et qu’il existe une classe de cohomologie kihlérienne
[a] telle que f*[a] soit proportionnelle a [a]. Il existe alors un revétement
fini de M qui est un tore.

Démonstration. Notons ¢ le nombre réel positif tel que

33) flal = qlal.

J.-P. Serre a montré dans [26] que les valeurs propres de f* sur chaque groupe
de cohomologie HP**(M;C) sont de module ¢’. Le degré topologique de f
est égal a ¢" ol n est la dimension de M : nous sommes donc dans le cadre
de la proposition précédente, dont nous poursuivons la démonstration avec les
mémes notations. Notons au passage que g est strictement plus grand que
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1 car f n’est pas inversible. Soit a un point de la variété d’Albanese A
de M’ et Q, la fibre du produit M’ = A x Q au-dessus de a. Puisque f
agit par automorphisme sur Q, f~'(Q,) est constitué d’exactement g" fibres.
Celles-ci sont toutes homologues a Q, et, M’ étant kahlérienne, la classe
d’homologie [Q] n’est pas nulle. Puisque la valeur propre g’ n’apparait pas
sur les homologies de dimension intermédiaire, ceci montre que Q est réduite
a un point. Autrement dit, M’ est un tore.
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