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L'Enseignement Mathématique, t. 49 (2003), p. 237-262

ENDOMORPHISMES DES VARIÉTÉS HOMOGÈNES

par Serge Cantat

1. Introduction

1.1 Par définition, un endomorphisme d'une variété complexe M est

une application holomorphe surjective de M dans elle-même. La question

principale abordée dans cet article est la suivante :

Quelles sont les variétés complexes compactes qui possèdent des endomor-

phismes de degré topologique strictement plus grand que 1

En d'autres termes, nous cherchons les variétés compactes munies d'une

application holomorphe surjective et non injective {i.e. non inversible).

Cette question n'est pas neuve. Dans [14], Mikhael Gromov étudie plusieurs

exemples d'endomorphismes, notamment sur les espaces projectifs et les

surfaces de Hopf, et demande s'il existe des endomorphismes non inversibles

sur les Grassmanniennes. Robert Lazarsfeld étend ce problème à toute variété
de drapeaux dans [19] et une réponse complète est fournie dans ce cadre par
Kapil H. Paranjape et Vasudevan Srinivas dans [22]. De nombreux résultats

sont également connus pour les variétés projectives de dimension inférieure

ou égale à 3 et pour celles dont le nombre de Picard est égal à 1 ([25] et [3],
[6], [S]). Nous brosserons un panorama rapide de la situation dans la partie 2.

1.2 La plus grande part de ce texte concerne les variétés complexes

compactes homogènes (kahlériennes ou non). Afin de présenter une version
concise des principaux résultats, introduisons la définition suivante:
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Définition 1.1. Un endomorphisme / d'une variété complexe compacte
M admet un facteur inversible si les trois conditions suivantes sont réunies :

(i) il existe une fibration holomorphe localement triviale rc : M —> B à valeurs
dans une variété lisse de dimension non nulle (sauf si M elle-même est

réduite à un point),

(ii) les fibres de tt sont permutées par /,
(iii) l'endomorphisme fB: B -A B induit par / est un automorphisme.

Remarque 1.1. Nous verrons à la partie 2 et au paragraphe 4.2 que
de nombreuses situations conduisent à l'existence de facteurs inversibles pour
lesquels l'automorphisme fB: B -> B est la restriction d'une transformation

projective de à une sous-variété B. Dans ce cas, l'étude de la dynamique
de / est grandement simplifiée.

THÉORÈME 1.1. Soit X une variété complexe, connexe, homogène et

compacte. Si f : X —> X est un endomorphisme de X qui n 'a pas de facteur
inversible, alors:

(i) X fibre sur un produit d'espaces projectifs Q — P1 x • • • x Pmk, et les

fibres sont des nilvariétés.

(ii) Les fibres de la fibration sont permutées par f, ce qui détermine un

endomorphisme fç) \ Q —ï Q.

(iii) Il existe des endomorphismes non injectifs fi : Pm —y Pm/, i — 1,..., k.

et un entier strictement positif l tels que soit l'application diagonale

(fu

La démonstration de ce théorème repose sur l'invariance de la fibration de

Tits (§4), le résultat de K. H. Paranjape et V. Srinivas mentionné plus haut et

une étude de Jörg Winkelmann concernant les variétés parallélisables. Nous

donnerons au passage une démonstration simplifiée du théorème de Paranjape

et Srinivas dans un cas particulier. De nombreux exemples sont décrits en

détails dans la partie 5 et l'essentiel de la preuve est présenté dans les parties
3 et 6.

1.3 Dans une dernière partie, nous abordons un problème légèrement
différent qui est motivé par les résultats récents de Jean-Yves Briend et Julien

Duval suivant lesquels tout endomorphisme non inversible de l'espace projectif
possède une unique mesure d'entropie maximale. La méthode employée semble

très souple et devrait s'appliquer à d'autres familles d'endomorphismes. Encore
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faut-il trouver des exemples. Nous expliquerons que ces exemples doivent

être cherchés sur des variétés dont la dimension de Kodaira est négative et

montrerons la proposition suivante :

PROPOSITION 1.2. Soit M une variété compacte kâhlérienne dont la

dimension de Kodaira est positive ou nulle. Soit f un endomorphisme de

M non inversible. S'il existe une classe de Kdhler [a] telle que f*[cx.] soit

proportionnelle à [a] alors M est revêtue par un tore et f est revêtue par
une transformation affine de ce tore.

De surcroît, modulo des conjectures classiques sur les variétés kâhlériennes,

il est possible de classer les endomorphismes non inversibles qui ne préservent

pas de fibration lorsque la dimension de Kodaira est positive ou nulle.

1.4 Plan du texte. La partie 2 dresse un panorama succinct des idées

de base utiles pour comprendre les variétés complexes compactes possédant

un endomorphisme de degré plus grand que 1. Plusieurs points de vue ne

sont pas abordés, notamment la réduction algébrique, le quotient rationnel
et les arguments relatifs à la structure des groupes fondamentaux de variétés

kâhlériennes, mais des idées proches sont exploitées dans les parties suivantes.

Les parties 3 à 6 concernent la structure des variétés homogènes munies

d'un endomorphisme non inversible. La dernière partie poursuit la partie 2 et

démontre la proposition 1.2. La partie 2 peut donc jouer le rôle d'introduction
ou de motivation pour les parties 3 à 6, ou pour la partie 7. Puisqu'elle ne

présente que des résultats très classiques, elle peut être ignorée par le lecteur
averti.

1.5 Remerciements. Je tiens à remercier A. Huckleberry pour son
accueil à l'Université de Bochum et les discussions que nous avons eues autour
du sujet abordé ici. Les lectures attentives et les remarques des rapporteurs
et des rédacteurs de L'Enseignement Mathématique ont considérablement
amélioré la présentation de cet article. Je les en remercie.

2. Endomorphismes des variétés complexes compactes

jj Dans cette première partie nous dressons un panorama rapide des résultats
de base permettant d'aborder la question centrale étudiée dans cet article,
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à savoir: quelles sont les variétés complexes compactes qui possèdent un
endomorphisme holomorphe de degré topologique strictement supérieur à 1

2.1 Dimension de Kodaira

La dimension de Kodaira d'une variété complexe compacte M est un
nombre entier kod(M), éventuellement égal à — oo, qui peut prendre les

valeurs —oo,0,l,2,..., dime (M). Elle est définie de la manière suivante.

Si L est un fibré en droites holomorphe sur M, H°(M,L) désignera le

C-espace vectoriel constitué des sections holomorphes globales de L. La
dimension de ce C-espace vectoriel est finie.

Soit x un point de M et L la fibre de L en ce point. L'évaluation des

sections de L au point x détermine une application linéaire 6lx : H°(M, L) Lx.
Cette application est identiquement nulle lorsque toutes les sections globales
de L s'annulent en x; on dit alors que x est un point base de L. Une fois
fixé un isomorphisme de Lx avec la droite vectorielle C, 6ix s'interprète
comme une forme linéaire et celle-ci ne dépend du choix de l'isomorphisme
C ~ Lx que par un facteur multiplicatif. En tout point x de M qui n'est pas

un point base de L, on obtient ainsi un élément [6Lx] de l'espace projectif
P(H°(M,L)*). Pour les fibrés en droites qui possèdent au moins une section

non nulle, ce procédé détermine une application méromorphe

(1) ©£,: M—> P(H°(M,L)*)

dont les points d'indétermination sont contenus dans les points bases de L.
Pour chaque entier strictement positif k, cette construction peut être répétée

en remplaçant L par la puissance tensorielle L®k. La dimension de Kodaira-
Etaka de L est alors définie comme le maximum des dimensions des images

(3L®k (M) :

(2) kod (M, L) max { dime (0l®*(M)) }

en convenant de poser kod(M,L) —oo si aucune puissance positive de L
ne possède de section non nulle.

La dimension de Kodaira de M, kod (M), est la dimension de Kodaira-

Iitaka du fibré canonique de M, noté Km et défini comme le déterminant

du fibré cotangent de M : KM — det(T*M). Les sections holomorphes de

Km sont donc les formes holomorphes de degré maximal. Les applications

méromorphes 0* := 0^<s>* sont appelées «applications pluricanoniques».
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2.2 Action d'un endomorphisme et ramification

Si /: M -A M est une application holomorphe surjective de M, la

transformation /* consistant à prendre l'image réciproque d'une forme

holomorphe par / définit un élément du groupe linéaire GL(H°(M,Km))-

En notant F la transformation projective associée à /*, on a la relation

(3) Fo0! =0j o/.

Cette remarque est valable en remplaçant Km par ses puissances tensorielles

positives K^k, 0i par 0^ et F par l'action Fk de / sur les sections de K$k.

Lorsque la dimension de Kodaira de M est strictement positive, il existe ainsi

une fibration méromorphe invariante par tout endomorphisme. L'action sur la

base de la fibration est linéaire: c'est la restriction de Fk à l'image de 0£.
Le théorème suivant, pour lequel nous renvoyons à [28], §VI, et à [18], §7.6,

se déduit facilement de ce qui vient d'être dit.

THÉORÈME 2.1. Soient M une variété complexe compacte dont la
dimension de Kodaira est positive ou nulle et 0^: M —PK^)*),
k > 0, les applications pluricanoniques. Si f est une transformation holomorphe

surjective de M, il existe une transformation projective périodique Fk de

P (H°(M,K®k)*) telle que 0k of Fko®k.

Remarque 2.1. Ceci montre que les endomorphismes des variétés

complexes compactes dont la dimension de Kodaira est strictement positive se

réduisent à des variétés de dimension inférieure. Les cas intéressants se situent
donc en dimension de Kodaira 0 et — oo. Lorsque la dimension de Kodaira de

M est maximale, i.e. kod(M) dime (M), les fibres génériques de l'application
0£ sont finies; par conséquent, tout endomorphisme de M est inversible et
le groupe des automorphismes de M est fini (voir [18], §7).

Si /: M -A M est une transformation holomorphe surjective d'une variété

complexe compacte, le diviseur de ramification Rf de / est défini comme
l'ensemble des points au voisinage desquels / n'est pas un difféomorphisme
local sur son image. C'est le lieu d'annulation du jacobien de /, donc Rf est
l'ensemble vide ou un diviseur. Le théorème suivant montre que Rf est vide
dès que la dimension de Kodaira de M est positive ou nulle. La référence
la plus ancienne que je connaisse pour ce résultat est l'article [23] de Klaus
Peters.
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THÉORÈME 2.2 (K. Peters). Soit M une variété complexe compacte dont
la dimension de Kodaira est positive ou nulle. Toute application holomorphe
surjective de M dans M est un revêtement non ramifié.

Démonstration. Supposons que Rf n'est pas vide et fixons une section

non nulle lo de K^k, pour k positif convenable. L'image réciproque de uj

par l'itéré n&me de / est une section de K^k qui s'annule sur l'union des

diviseurs effectifs Rf, f~1(Rf), f~n~l(Rf). Puisque / est surjective, on
obtient ainsi des sections du fibré en droites K^k dont le lieu des zéros

(comptés avec multiplicité) croît indéfiniment. Ceci est impossible.

2.3 Fibration d'Albanese

Pour les variétés kâhlériennes, il existe une deuxième fibration naturelle
invariante par tout endomorphisme : la fibration d'Albanese. Notons H°(M, £2j^)

le C-espace vectoriel constitué des 1-formes holomorphes globales de M.
Puisque M est supposée kâhlérienne, chaque forme holomorphe est fermée.

En particulier, lorsque 7 est un lacet de M, l'intégration d'une 1-forme

holomorphe

ne dépend que de la classe d'homologie [7] G H1 (M, Z). La théorie de Hodge
montre que la partie sans torsion de H1 (M, Z) se plonge de cette manière en

un réseau cocompact de H°(M, QlM)*. Le tore complexe obtenu en quotientant
H°(M, Q]f)* par ce réseau sera noté Alb(M) : c'est la variété d'Albanese de M.

Choisissons un point base x dans M. Si y est un point de M et uj est une

1-forme fermée, l'intégrale de u entre x et 7 dépend du chemin d'intégration
choisi, mais les différentes valeurs obtenues coïncident modulo l'intégration
de uj sur les lacets basés en x. On dispose ainsi d'une application holomorphe

pour chaque choix d'un point base x dans M. C'est la fibration d'Albanese
de M. Elle est équivariante sous l'action de tout endomophisme /, l'action
induite par / sur Alb(M) étant la transformation affine associée à l'action
de / par image réciproque sur les 1-formes holomorphes (le paramètre de

translation provient du choix du point base x).
Pour trouver des endomorphismes non inversibles qui ne préservent aucune

fibration, on peut donc supposer que la fibration d'Albanese de M est triviale,
c'est-à-dire que ses fibres sont finies ou que l'image est un point. Dans

7

>y

(4)
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le premier cas, l'existence d'endomorphismes non inversibles ne préservant

aucune fibration force M à être un tore (voir [28]). Dans le second cas, le

premier groupe d'homologie de M est fini.

2.4 Petite dimension

Le théorème d'Hurwitz montre que les courbes qui possèdent des endo-

morphismes de degré plus grand que 1 sont la droite projective et les courbes

elliptiques. Ceci peut être démontré à l'aide de la remarque 2.1.

Les surfaces qui possèdent des endomorphismes non inversibles ne

préservant aucune fibration doivent être cherchées parmi celles dont la
dimension de Kodaira est 0 ou — oo. A côté des tores et du plan projectif on

trouve l'exemple des surfaces toriques; ainsi, la transformation polynomiale
[x : y : z] [x2 : y2 : z2] détermine un endomorphisme du plan projectif qui
se relève au plan projectif éclaté en [0:0:1]. Les exemples ainsi construits

sur les variétés toriques sont tous conjugués à des endomorphismes du plan

projectif par une transformation birationnelle. Ces trois familles d'exemples
persistent en toute dimension.

D'après [21], les endomorphismes non inversibles des surfaces kâhlériennes

appartiennent tous à l'une de ces trois familles. De surcroît, les fibrations

méromorphes invariantes par des endomorphismes non inversibles deviennent
triviales après revêtement fini (voir [5], [21] et les références qui s'y trouvent).
La situation pour les surfaces est donc bien comprise. Les blocs élémentaires

sont des variétés homogènes.

Pour les variétés projectives de dimension 3 dont la dimension de Kodaira
est positive ou nulle, on dispose également d'une classification. Celle-ci
n'apporte pas de surprise (voir [25]). Le cas kod(M) -oo est plus
intéressant et plus obscur: Ekaterina Amerik a étudié les endomorphismes
des variétés qui admettent une fibration par des espaces projectifs, ceci en
dimension quelconque [5], mais peu de résultats sont disponibles pour la
situation générale.

2.5 Une question proche

Au lieu de regarder les endomorphismes d'une variété X dans elle-
même, on peut s'intéresser aux applications surjectives /: X -» Y entre
variétés de même dimension. Dans [3], [4], [6], les variétés de Fano, les
quadriques et les variétés projectives avec un nombre de Picard égal à 1

sont traitées. Les méthodes employées ont un corollaire intéressant pour notre
étude: une hypersurface lisse H de l'espace projectif P^, N > 2, admet
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un endomorphisme non surjectif si et seulement si H est un plan ou une
quadrique de P3 (voir [4] et [8]).

Dans ce texte, nous analysons le cas des espaces homogènes compacts.
Ceci permet de quitter le monde des variétés kâhlériennes et de traiter des

exemples significatifs en dimension de Kodaira négative.

Une variété complexe compacte est homogène si le groupe de ses difféo-
morphismes holomorphes agit transitivement sur la variété. Dans ce cas, la
variété est isomorphe au quotient d'un groupe de Lie complexe G par un

sous-groupe de Lie complexe fermé H (voir [2]).
Cette partie classe les endomorphismes des variétés complexes compactes

qui sont à la fois kâhlériennes et homogènes.

3.1 Tores

Soit V un espace vectoriel complexe de dimension finie n, T un
réseau de V et A V/Y le tore associé. Puisque le fibré tangent de A
est trivial, le principe du maximum montre que la différentielle de tout
endomorphisme /: A -» A est constante. Les endomorphismes de A sont
donc les transformations affines de V qui permutent les orbites de T. Les
homothéties de rapport entier fournissent des exemples explicites mais il existe

quelques exemples nettement plus riches.

Exemple 3.1. Soit A un réseau de la droite complexe C. Pour tout entier

n, An est un réseau de Cn stabilisé par l'action des endomorphismes linéaires
de Cn à coefficients entiers. Ainsi, pour n 2, la transformation linéaire

induit un endomorphisme de degré topologique 24 sur C2/A2.

3.2 Variétés de drapeaux

Le deuxième type d'exemples est fourni par les variétés de drapeaux,
c'est-à-dire les quotients compacts et lisses S/P où S est un groupe de Lie
complexe semi-simple et P est un sous-groupe de Lie complexe connexe. Les

3. Variétés homogènes kâhlériennes

(5)
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Grassmanniennes et l'espace des k-plans isotropes pour une forme quadratique

ou une forme symplectique sont des exemples de telles variétés. On retrouve

ainsi tous les espaces homogènes «classiques». On dispose pour ces variétés

d'un très joli théorème dû à Paranjape et Srinivas [22] :

Théorème 3.1 (K.H. Paranjape et V. Srinivas). Soit X une variété de

drapeaux et f: X -A X un endomorphisme. Il existe alors un nombre fini
d'endomorphismes fi: Pn/ —I- P"', i — 1,..., /c, et un automorphisme d'une

variété de drapeaux fo: Xo Xo tels que X soit isomorphe au produit
X0 x P"1 x • • • x Pnk et l'un des itérés de f coïncide avec l'endomorphisme

diagonal (foju • • ,/*)•

Lorsque la variété X S/P est le quotient d'un groupe de Lie simple,
le théorème montre que tout endomorphisme est un automorphisme, sauf

si X est un espace projectif. En particulier, les quadriques de dimension
d > 3 et les Grassmanniennes qui ne sont pas des espaces projectifs ne

possèdent aucun endomorphisme de degré topologique différent de 1. Afin de

présenter quelques-unes des idées qui peuvent être employées pour démontrer

ce théorème, nous en donnons une preuve pour G(l,3), la Grassmannienne
des droites de P3. C'est un cas particulier intéressant car il s'agit à la fois
d'une quadrique et de la plus petite Grassmannienne qui ne soit pas un espace
projectif.

Démonstration pour G(l,3). Commençons par introduire quelques notations

standards. L'élément d de G(l, 3) et la droite d C P3 qui lui correspond
seront systématiquement identifiés. Soit p0 un point et //0 un plan de P3.

On pose alors :

La classe d'homologie de chacune de ces deux variétés ne dépend pas
du choix de p0 et de H0 ; elle sera donc notée [02,0] (resp. [au]),
sans référence aux choix effectués. Ces deux classes d'homologie forment
une base du Z-module HfiGil, 3), Z) qui est orthonormée pour la forme
d'intersection (voir [13], §1.5). Puisque la classe d'homologie de toute sous-
variété complexe de dimension 2 dans G(l,3) doit couper [a2,0] et [0*1 1]

positivement, l'ensemble décrit par ces classes d'homologie coïncide avec le
cadran N [a2,o] + N. [aj5i].

(6)

(7)

W2,o(po) {deG(fi3)\p0ed}
{d e G(l, 3) I d C #0} •
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LEMME 3.2. Soit S une sous-variété complexe de G(l, 3) de dimension 2.

Supposons que cette surface est irréductible et réduite et qu 'il existe un entier
m strictement positif tel que [5] m[a\^i]. Il existe alors un plan H dans
P3 tel que S W\^{H). En particulier, m est égal à 1.

C'est le point-clef: la présence d'une telle classe d'homologie est un
phénomène qui n'apparaît évidemment pas pour les espaces projectifs.

Démonstration du lemme. Soit S comme dans l'énoncé et V(S) la sous-
variété de P3 balayée par les droites de S :

Comme [S] est proportionnelle à [a\^], le nombre d'intersection [5].[cr2?o] est

nul, ce qui signifie qu'un point générique de P3 n'appartient pas à V(S). La
variété V(S) est donc une surface, qui est irréductible car S l'est. Pour conclure,
il suffit de remarquer qu'une hypersurface irréductible de P3 balayée par une
famille à deux paramètres de droites est un plan, puis de poser H V(S).

Soit /: G(l, 3) -> G(l, 3) un endomorphisme et 5 son degré topologique:
pour montrer que / est un automorphisme, nous allons montrer que S est

égal à 1.

Notons /* la transformation linéaire de i?4(G(l, 3), Z) associée à /. Le
caractère holomorphe de / montre que /* préserve le cadran N. [cr2,o] +
N.[<ti,i]. Mais /* est une similitude de 7/4(G(l, 3),R) pour la forme
d'intersection, donc /* ou f2 est une homothétie. En particulier,

Si H est un plan générique de P3, la surface f2(W\^(H)) est une surface

irréductible de G(l,3). D'après le lemme 3.2, elle coïncide donc avec la
surface Wi5i(SP(//)) associée à un autre plan SP(/f). Ceci détermine une

application holomorphe SP: (P3)* -A (P3)*.

Montrons que SP envoie droite sur droite: si d est une droite de P3 et

H est un plan qui contient d, alors W\a(H) contient le point de G(l,3)
correspondant à la droite d, et réciproquement; la droite de (P3)* constituée

des plans contenant d est donc envoyée par SP sur la droite des plans
contenant fid).

Puisqu'elle envoie droite sur droite, l'application est de degré 1. Ceci
entraîne immédiatement que / est de degré 1 : l'image réciproque d'un point
d de G(l,3) doit coïncider avec la droite x¥~l(d).

(8) V(S) {xeP31 3d es, xed}.

(9) /*Ki] <5Ki].
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Remarque 3.1. La preuve que nous venons de présenter simplifie

légèrement les arguments de [22] et a l'avantage d'employer peu d'outils

évolués. La stratégie s'applique pour toutes les variétés de drapeaux classiques

- i.e. pour les ensembles de sous-espaces vectoriels emboîtés de Cn. Par contre,

elle ne s'applique pas pour la quadrique lisse de dimension 3. Pour une preuve
dans le cas général, nous renvoyons le lecteur à [22] ; le cas des quadriques

apparaît également dans [4].

3.3 Cas général

D'après un théorème d'Armand Borel et Reinhold Remmert, toutes les

variétés homogènes kahlériennes compactes sont isomorphes au produit d'un

tore T par une variété de drapeaux Q. Puisque la projection de T x Q

sur T coïncide avec le morphisme d'Albanese, ses fibres sont permutées par
tout endomorphisme. Si f:TxQ-ïTxQ est une application holomorphe
surjective, on peut donc l'écrire sous la forme

(10) f(t,q) 0a(t),gt(q)),

où a est un endomorphisme de T et t gt est une application holomorphe
à valeurs dans les endomorphismes de Q. Quitte à remplacer / par l'un de

ses itérés, le théorème 3.1 et la connexité de T permettent de supposer que

gt est à valeurs dans :

(i) les endomorphismes d'un certain degré d'un espace projectif, ou

(ii) la composante connexe du groupe d'automorphismes d'une variété de

drapeaux.

Chacun de ces ensembles est égal au complémentaire d'une famille non vide
d'hypersurfaces dans un espace projectif. L'application t \-» gt doit donc être
constante. Nous avons donc démontré la proposition suivante :

PROPOSITION 3.3. Soit T un tore et Q une variété de drapeaux. Les
endomorphismes de T x Q sont tous du type (t,q) H* (a(t),g(q)) où a est un
endomorphisme de T et g est un endomorphisme de Q.

En particulier, tous les endomorphismes de ces variétés préservent la
projection sur Q. Il s'agit d'un cas particulier de fibration de Tits. Nous
allons maintenant montrer que cette dernière est toujours invariante.
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4. Invariance de la fibration de Tits

4.1 La fibration de Tits

Pour étudier les endomorphismes d'une variété complexe compacte,
l'existence de fibrations invariantes est un atout crucial. Nous avons déjà
signalé les fibrations d'Albanese et pluricanoniques dans la partie 2. Le troisième

exemple est fourni par le processus de réduction algébrique. Il donne naissance
à une fibration dont les fibres sont les sous-variétés sur lesquelles toute fonction

méromorphe est constante. Tout endomorphisme préserve cette fibration;
l'action induite sur la base correspond à celle de l'endomorphisme / par
composition sur le corps des fonctions méromorphes. Dans le cas général, il s'agit
d'une fibration méromorphe (voir [28]) mais pour les variétés homogènes, on

dispose du théorème suivant ([1], theorème 6.2):

THÉORÈME 4.1. Soit X une variété homogène compacte. Il existe une

variété homogène projective Y et une fibration localement triviale p: X —>• Y

telle que :

(i) Les fibres de p sont parallélisables,

(ii) p réalise un isomorphisme entre le corps des fonctions méromorphes
de X et celui de Y,

(iii) tout endomorphisme de X permute les fibres de p.

D'après le théorème de Borel et Remmert, Y est le produit d'une variété

abélienne par une variété de drapeaux. Une façon de définir la fibration de

Tits est de composer la fibration précédente avec la projection de sa base sur
la variété de drapeaux. Le théorème précédent et la proposition 3.3 montrent
ainsi que la fibration de Tits est invariante par tout endomorphisme.

PROPOSITION 4.2. La fibration de Tits d'une variété homogène compacte
est invariante par tout endomorphisme.

Pour obtenir ce résultat, nous avons employé une définition quelque peu
inhabituelle de la fibration de Tits. Voici la construction initiale de Jacques

Tits. Soit X — GjH une variété homogène compacte, avec H un sous-groupe
fermé du groupe de Lie complexe G. Notons la composante connexe de

l'élément neutre dans H et N le normalisateur de H°. On peut montrer que

G/N est une variété de drapeaux. On obtient ainsi une fibration de X sur

une variété de drapeaux Q qui s'avère être la fibration de Tits; en particulier,
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cette construction ne dépend pas de l'écriture de X sous la forme G/H. Les

fibres sont isomorphes au quotient du groupe de Lie complexe L N/H°

par le sous-groupe discret cocompact T H/H° ; ce sont donc des variétés

parallélisables connexes. Nous renvoyons le lecteur à [9], [27], [15] et [2]

pour les démonstrations de ces résultats.

Vocabulaire. Si X est une variété homogène compacte, les fibres et la

base de la fibration de Tits de X seront appelées fibres de Tits et base de Tits

de X.

4.2 Première application

Soit Q la base et F la fibre de la fibration de Tits d'une variété homogène

compacte X. Si / est un endomorphisme de X, il induit un endomorphisme

/ de la variété de drapeaux Q. Nous pouvons donc appliquer le théorème

de Paranjape et Srinivas. S'il apparaît un facteur Q Qo x Q\ sur lequel

f induit un automorphisme f0: Qo -L Qo, la dynamique de / s'appauvrit
considérablement: /0 est induite par une transformation linéaire isotope à

l'identité.
Afin de démontrer le théorème 1.1, nous pourrons donc supposer que la

base Q de la fibration de Tits est un produit d'espaces projectifs :

(11) Q Pmi x ••• xPmÈ ke N,

et que / agit diagonalement : / (fu Jk) où /• 6 End(PmQ.

Soit q un point de Q et PqJ l'espace projectif qui passe par q et est donné

par le jème facteur du produit (11). L'image réciproque de la fibration de Tits

par l'injection P^ -A Q ne dépend pas de q car X est homogène. On obtient
ainsi une variété homogène Xj dont la fibration de Tits a des fibres isomorphes
à celles de X et une base isomorphe à Pmj. Puisque tout endomorphisme d'un

espace projectif admet des points fixes, / induit un endomorphisme de Xj.
Nous étudierons donc d'abord les endomorphismes des variétés homogènes
dont la base de Tits est un espace projectif.

5. Quelques exemples

Présentons maintenant quelques exemples qui illustrent l'invariance de la
fibration de Tits et donnent une petite idée des phénomènes qui peuvent
apparaître lorsque la variété homogène n'est pas kâhlérienne.
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Exemple 5.1. L'exemple le plus simple de variété homogène qui ne soit

pas kâhlérienne est la surface de Hopf, obtenue en quotientant C2 \ {0} par
les homothéties de rapport Xn, ne Z, À étant un nombre complexe non nul.
Cette surface S\ est difféomorphe à S3 x S1. Elle fibre sur P1, les fibres
étant isomorphes à la courbe elliptique C*/(À).

En voici une seconde construction qui montre directement que cette variété

est homogène. Soit H\ le sous-groupe de SL(2, C) défini par

(12) Ha {(A0 A-h) : "eZ>^cJ
Le quotient de SL(2, C) par H\ est isomorphe à la surface de Hopf S\. La
fibration elliptique de S\ sur P1 coïncide avec sa fibration de Tits et provient
de l'inclusion de H\ dans le groupe des matrices triangulaires supérieures.

Si P(X, Y) et <2(X, Y) sont deux polynômes homogènes de degré d qui
n'ont que l'origine comme zéro commun, la transformation

<j>(x,y) (P(x,y),Q(x,y))

passe au quotient en un endomorphisme de degré sur la surface de Hopf.
On construit ainsi de nombreux exemples d'endomorphismes; l'invariance de

la fibration de Tits résulte immédiatement de l'homogénéité de P et ß.

Exemple 5.2. Le deuxième exemple de variétés complexes compactes

non kâhlériennes est celui donné par Eugenio Calabi et Beno Eckmann dans

[11]. Il s'agit de variétés de dimension 3 difféomorphes à S3 x S3. Chacune

des sphères fibre en cercles sur P1 et le produit de ces deux fibrations donne

naissance à une fibration elliptique localement triviale. L'invariant modulaire
de la fibre peut être fixé de manière arbitraire lors de la définition de la

structure complexe sur S3 x S3. Si cet invariant est égal à r, nous noterons

Mt la variété de Calabi-Eckmann correspondante.

Ces variétés peuvent être construites de la manière suivante. Soit V

(C2 \ {0})2. L'action de C sur V donnée par

(13) t*((u,v),(x,y))<=; ((e~t/2u,et/2v),(e'"rt/2x,eTt/2y))

est fidèle dès que le nombre complexe r appartient au demi-plan de Poincaré.

L'espace des orbites est alors une variété isomorphe à Mr. Cette construction

a l'avantage de montrer directement que Mr est homogène et possède de

nombreux endomorphismes. Pour en construire, il suffit en effet d'exhiber des
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transformations holomorphes de V qui permutent les orbites de l'action (13).

Par exemple,

(14) ((u,v),(x,y)) ((m3 + u2v, u3 + v

détermine un endomorphisme de Mr dont le degré topologique est égal à 34.

Il est facile de constater sur cet exemple que la ûbration elliptique de

Mt sur P1 x P1 est équivariante : l'endomorphisme permute les fibres et

induit une transformation polynômiale de degré 3 sur chaque P1. C'est une

illustration de l'invariance de la fibration de Tits. L'égalité entre les degrés

des deux endomorphismes de P1 illustre un autre phénomène. Notons Er la

fibre elliptique de Mr. La suite exacte longue des groupes d'homotopie

(15) » 7T2 (P1 x P1) -A TO(Er) -A 7TT(Mr) -» 7TX (P1 XP1)^

montre que la simple connexité de Mr résulte du caractère surjectif de la
flèche 7T2 (P1 x P1) -A 7T](Et). L'action d'un endomorphisme de P1 sur le

second groupe d'homotopie ^(P1) ~ Z coïncide avec la multipliation par
le degré de l'endomorphisme. Celle d'un endomorphisme holomorphe de Er
sur 7Ti (JEt Z2 se fait par une similitude dont le rapport a est égal à la
racine carrée du degré topologique. Puisque la suite exacte est équivariante,
il s'ensuit que le degré de l'endomorphisme sur chaque P1 est égal à a. En

particulier, tous les endomorphismes de P1 x P1 ne se relèvent pas en des

endomorphismes de Mr.
E. Calabi et B. Eckmann construisent des structures complexes similaires

sur S2/H_1 x S2^+1 pour toute paire d'entiers positifs (p,q) (voir [11], [20]).
Une étude analogue à la précédente peut être effectuée pour toutes ces variétés.

Exemple 5.3. Donnons maintenant un exemple pour lequel les fibres de

Tits sont des nilvariétés (et pas des tores). Soit %3(C) le groupe de Heisenberg
constitué des matrices

(16)

où x, y et Z sont trois nombres complexes. Le quotient de %(C) par %3(Z[z])
est une variété complexe compacte que nous noterons M3.

Soit P le sous-groupe de SL(2, C) formé par les matrices triangulaires
supérieures. Si r appartient à Z[i], on note pT la représentation de P dans
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Aut°(M3) déterminée par la translation à gauche par l'élément

(1

A lQg<A) T\

2 i 1 )'
Puisque «l'image» de pT est dans le centre de % (C), il est facile de voir que

pT définit bien une représentation à valeurs dans Aut(M3) et que la variété XT
obtenue par suspension de cette représentation au-dessus de P1 SL(2, C)/P
est homogène. La fibration de Tits de XT coïncide avec la projection sur P1

et n'est pas triviale. Pour s'en convaincre, il suffit de remarquer que l'image
du second groupe d'homologie de P1 dans la fibre M3 est engendrée par la
matrice de paramètres x y 0, z r.

Si p et q sont deux entiers et / est un endomorphisme de P1 de degré

pq, la transformation

(l
x z\ l\ p.x pq.z\

0 1 y])^ (f([u : v]), 0 1 q.y
0 0 1/ \0 0 1 /

détermine un endomorphisme de XT de degré (pq)5. Tous les endomorphismes
de P1 se relèvent donc en des endomorphismes de M3. Les endomorphismes
ainsi construits n'ont pas de facteur inversible.

Exemple 5.4. Donnons maintenant un exemple de variété homogène non
kâhlérienne ne possédant pas d'endomorphisme de degré supérieur à 1. Soit

X le quotient de SL(/î, C) par un sous-groupe discret cocompact T. Pour

montrer que tout endomorphisme / : X —)> X est un automorphisme, utilisons

que X est parallélisable, son fibré cotangent étant trivialisé par les 1 -formes
invariantes par translation à droites sur SL(rc, C). L'action de / sur les formes
différentielles induit ainsi un endomorphisme f* de l'algèbre de Lie s[(/î, C),
dont le déterminant est égal au degré topologique de /. Tout endomorphisme de

sl(>7, C) étant un automorphisme intérieur (voir [16], prop. 1.98), le déterminant

de /* est égal à 1 et / est un automorphisme.

6. Existence de facteurs inversibles.

Nous démontrons maintenant le théorème énoncé dans l'introduction. Les

idées principales sont déjà apparues dans la partie précédente.
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6.1 Structure de la fibration de Tits

Supposons que la base de la fibration de Tits est un espace projectif F77. La

fibre F est une variété parallélisable : nous noterons Lo la composante connexe
de l'identité de son groupe d'automorphismes et L son revêtement universel. Il
existe un sous-groupe discret cocompact Io de Lq tel que F Lo/To. L'image
réciproque de To par l'application de revêtement L —» Lq sera notée T.

Si l'on écrit X sous la forme G/H, où G est un groupe de Lie complexe

simplement connexe agissant holomorphiquement sur X, on récupère un

morphisme p\ G -» Aut(P777) dont l'image S agit transitivement sur F77.

En particulier, S coïncide avec le groupe PGL(/î, C) ou éventuellement avec

le groupe symplectique Sp(n/2, C) si n est pair (voir [2]). Ces groupes sont

simples, ce qui permet d'appliquer le théorème de Levi-Malcev et de trouver
une section a: S -A G du morphisme p. Nous noterons encore S l'image
dans G du groupe S.

Fixons un point qo de P777 par exemple celui de coordonnées [1 : 0 : : 0],
et notons P le stabilisateur de q0 dans S, de sorte que F77 s'identifie à S/P.
L'action de S sur X (via a: S G) permute transitivement les fibres de la
fibration de Tits. Nous pouvons donc reconstruire X comme la suspension de

la représentation

obtenue par l'action de P sur la fibre Fqo au-dessus du point g. L'action de
P ainsi construite se fait par translation à gauche.

Si S est le groupe spécial linéaire, alors P est (conjugué à)

Soit / un endomorphisme de X, / l'endomorphisme induit sur P77 et
q un point de P777 Si s est un élément de S qui envoie Fa sur Fh x,I j

q /(<?) '
I s of détermine un endomorphisme de la fibre Fq. Ce dernier ne dépend

du choix de s que modulo P : son action sur les groupes d'homotopies et
d'homologie de Fq n'en dépend donc pas. Cette remarque permet de définir
la notion d'endomorphisme agissant par translation, par automorphisme ou
par endomorphisme de degré d dans les fibres.

(19) P Aut(F?0)° L0

et lorsque S est le groupe symplectique Sp(g, C),
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6.2 Un théorème de Jörg Winkelmann

Sur une variété parallélisable compacte L/F, les champs de vecteurs

holomorphes globaux sont en correspondance bi-univoque avec les éléments
de l'algèbre de Lie l de L. Tout endomorphisme </> de L/F détermine alors un
endomorphisme d'algèbre de Lie </>* : [ —¥ 1 (voir [29]). Si L est simplement
connexe, il existe donc un automorphisme O de L qui stabilise F (i.e.

O(r) c T) et un élément a de L tel que 4>(gF) — a&(g)F.
Puisque </>* est un morphisme d'algèbre de Lie, il préserve le radical

résoluble de l. Ceci permet de trouver une fibration équivariante de L/F à

valeurs dans S/F' où S est semi-simple. Puisque tous les endomorphismes
des algèbres de Lie simples sont intérieurs, l'endomorphisme induit sur la
base est un automorphisme et l'un de ses itérés est une translation à gauche.
Ce raisonnement peut être poussé un cran plus loin et conduit au théorème

suivant de J. Winkelmann [29] :

THÉORÈME 6.1 (J. Winkelmann). Soit F L/F une variété complexe

compacte parallélisable et f un endomorphisme holomorphe de F. Si N
désigne le nilradical de L, il existe un automorphisme f : L/NF —ï- L/NF
qui rend le diagramme suivant commutatif

L/T->L/T

L/(NT)——-4 L/(NT)

Reprenons l'étude de la fibration de Tits commencée au paragraphe 6.1. Le
théorème précédent s'applique simultanément à l'action du groupe parabolique
P et à celle induite par l'endomorphisme / sur les fibres. Nous pouvons donc

énoncer une version fibrée du théorème de J. Winkelmann. Si#nous notons

L/F la fibre de Tits (où F est un réseau du groupe de Lie complexe, connexe
et simplement connexe L), et N le radical nilpotent de L, nous obtenons un

diagramme commutatif de fibrations
morphisme fibré TrX 5- Y

4
pm y pm

id

qui est équivariant sous l'action de /; la variété Y est un espace homogène

complexe compact dont la base de Tits est isomorphe à Pm et la fibre à
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L/(NT) ; cette variété Y est munie d'un endomorphisme fY agissant par

automorphisme dans les fibres.

6.3 ENDOMORPHISMES AGISSANT PAR AUTOMORPHISMES DANS LES FIBRES

PROPOSITION 6.2. Soit X une variété homogène complexe compacte dont

lafibration de Tits a pour base un espace projectif. Si f est un endomorphisme

de degré strictement supérieur à 1 qui agit par automorphisme dans les fibres,

la fibration de Tits est un produit.

Démonstration : première étape. Conservons les notations du

paragraphe 6.1 et supposons pour commencer que la fibre de Tits F est le

quotient d'un groupe de Lie semi-simple simplement connexe L. Dans ce cas,

quitte à remplacer l'endomorphisme / par l'un de ses itérés, l'action de /
dans les fibres se fait par translation. En particulier, son action sur le groupe
fondamental des fibres est triviale. Le degré de / étant supérieur à 1, l'action
de / sur 7r2(Pm) est la multiplication par un entier strictement plus grand

que 1. L'équivariance de la suite exacte

(22) •.. ^ ^2(Pm) -A TTfiF) -A 7n(X) -A 7o(Pm) {0} -A • •.

montre donc que la première flèche a une image finie. Quitte à changer X

par un revêtement fini, on peut donc supposer que le groupe fondamental de

F s'injecte dans celui de X.
Si nous passons au revêtement universel X de X, la fibre de la fibration de

Tits est alors remplacée par le groupe de Lie simplement connexe L et X est

l'espace total d'un fibré principal sous l'action de L par translations à droite.

L'endomorphisme / s'y relève en un morphisme d'espaces fibrés f:X-ïX,
qui est équivariant pour l'action de L par multiplication à droite à la source
et par multiplication à droite après composition par un automorphisme de L
au but. On obtient donc un morphisme / au-dessus de / entre deux fibrés

principaux équivalents. Les classes caractéristiques du fibré principal X doivent
être invariantes par / et sont donc nulles, car / agit par multiplication par un
entier positif strictement plus grand que 1 sur chaque espace de cohomologie.
Nous allons employer cette propriété à plusieurs reprises pour montrer que la
fibration de Tits est en fait un produit.

Soit W le fibré vectoriel obtenu en faisant le produit fibré du fibré principal
X par la représentation adjointe de L. Il suffit de montrer que ce fibré vectoriel
est trivial. Par construction, X est un fibré principal obtenu par la suspension
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d'une représentation

(23) p.P^L
où P est le stabilisateur du point [1 : 0 : : 0] pour l'action de PGL(m+l, C)
(resp. Sp((m + l)/2,C)) sur F". Le fibré W est donc un fibré vectoriel

homogène: il est obtenu par suspension de la représentation adLop où adl
désigne la représentation adjointe de L.

L'endomorphisme / détermine un endomorphisme de W (au-dessus de

/) qui agit par isomorphisme linéaire dans les fibres. L'argument relatif aux
classes caractéristiques du fibré X affirme ainsi que les classes de Chern de

W sont nulles et, en particulier, que sa pente

ci(W)
(24) p(W)

rang(lL)

est nulle. Si V était un sous-faisceau de W de pente p{V) strictement

supérieure à 0, son image réciproque par fn serait de pente dnp{V), ce

qui contredirait l'existence d'une borne supérieure pour les pentes des sous-

faisceaux de W (voir [17], § V.7). Ceci montre que W est un fibré semi-stable

et permet de trouver une décomposition de W en somme directe de sous-

faisceaux

(25) W ®i=1_kWi

telle que chaque Wt est stable et de pente nulle [24]. L'image réciproque
d'une telle décomposition par / est une nouvelle décomposition de W en

faisceaux stables: par le corollaire 2.8 de [24], chaque /*(W/) est donc

isomorphe à l'un des Wj. Ceci montre que toutes les classes de Chern des

Wi sont nulles. Puisque P" est simplement connexe, la nullité des classes de

Chern et la stabilité assurent la trivialité. Les Wi, et donc W lui même, sont

triviaux.
Ceci démontre la proposition lorsque la fibre de Tits est le quotient d'un

groupe de Lie semi-simple par un réseau : la fibration étant triviale, / admet

un facteur inversible.

Seconde étape. Lorsque L est un groupe de Lie connexe simplement

connexe quelconque, l'argument qui vient d'être donné montre que le fibré

principal associé à sa partie semi-simple est trivial.
Dans la suite exacte (22) nous pouvons donc supposer que l'image de la

première flèche est contenue dans l'intersection de T avec le radical de L.
On peut donc supposer pendant quelques lignes que L est résoluble.
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Un automorphisme d'un tore agit sur le groupe fondamental 7T en ne

possédant aucune valeur propre entière strictement plus grande que 1. Plus

généralement, si L est résoluble, il n'existe pas de sous-groupe cyclique infini
A {...,a_1, 1, a, a2, ...} dans T tel que /*(a) ad avec \d\ > 1.

L'équivariance de la suite exacte (22) montre alors que l'image de la première
flèche est triviale. Comme dans la première étape, on peut donc relever la

dynamique au revêtement universel de X et supposer que les fibres de la

projection sur Pm sont isomorphes au groupe de Lie simplement connexe L.
La variété X est obtenue en faisant une suspension à partir d'un morphisme

du groupe parabolique P dans L et la première étape permet de supposer que
le morphisme du groupe parabolique P à valeurs dans L est en fait à valeurs
dans le radical résoluble Rad(L) de L.

Supposons pour commencer que P est le stabilisateur de [1 : 0 : : 0]
dans SL(m + 1, C). Un tel morphisme est trivial sur le sous-groupe simple
constitué des matrices de la forme

Il est donc trivial sur le plus petit sous-groupe distingué contenant cette copie
de SL(m, C) et il est facile d'en déduire que le morphisme factorise à travers
la représentation de P dans C* donnée par

Si l'un des poids de la représentation associée est non nul, nous pouvons
construire un fibré en droites /-équivariant de classe de Chern non nulle, ce
qui est impossible. Tous les poids de la représentation sont donc nuls et le
morphisme de P dans L est trivial.

Supposons maintenant que P est le stabilisateur de [1 : 0 : : 0] dans
le groupe Sp(g, C), avec m+ 1 —2q. Dans ce cas, le morphisme de P dans
Rad(L) est trivial sur le sous-groupe de Lie simple

où A décrit Sp(g-1, C) et Id est l'élément neutre de SL(2, C). Le morphisme
de P dans Rad(L) est donc trivial sur le plus petit sous-groupe algébrique
distingué qui contient ce groupe. Il transite ainsi par

(26) A G SL(m, C).

(27)

(28)

(29)
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où M est une matrice triangulaire supérieure de déterminant 1,

<*» «=(ô
Là encore, l'argument sur les classes de Chern permet de conclure que la

représentation est triviale : les matrices M diagonales sont dans le noyau et le

sous-groupe distingué qu'elles engendrent coïncide avec le groupe des matrices

triangulaires supérieures.

Nous avons donc montré dans tous les cas que la représentation de P était

triviale, ce qui assure que X est un produit. Le théorème est démontré.

Exemple 6.1. Pour les surfaces de Hopf (voir l'exemple 5.1), le
revêtement universel coïncide avec le fibré tautologique de P1 (de fibre C*
et de classe de Chern —1). Cette surface n'a donc aucun endomorphisme
non injectif qui soit de degré 1 dans les fibres. Nous pourrions le montrer
directement en travaillant sur le revêtement universel C2 \ {0}.

6.4 Application

Pour démontrer le théorème 1.1, il suffit maintenant de juxtaposer le

paragraphe 6.2, la proposition 6.2 et le théorème de Paranjape et Srinivas : si /
est un endomorphisme sans facteur inversible, la base de la fibration de Tits doit
être un produit d'espaces projectifs et / induit un produit d'endomorphismes
non inversibles, donc la fibre est une nilvariété.

Remarque 6.1. Certains endomorphismes de la base n;Pm' ne se relèvent

pas en des endomorphismes de X, même si la fibre de Tits est une nilvariété. Si

l'on suppose que la fibre F est un quotient d'un groupe de Heisenberg 74, une
condition nécessaire et suffisante est que les endomorphismes fi : Pm —y Pm/

aient tous même degré pour les indices i tels que la suspension de F au-dessus

de Pm/ est non triviale. Ce résultat peut être obtenu en utilisant les arguments
présentés au cours des exemples 5.2 et 5.3. Nous le laissons en exercice.

7. Endomorphismes irréductibles

Dans [10], J.-Y. Briend et J. Duval montrent que les endomorphismes

non inversibles de l'espace projectif possèdent tous une unique mesure de

probabilité invariante d'entropie maximale. De plus, cette mesure coïncide avec
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la limite, lorsque k tend vers l'infini, des mesures de moyenne sur les points

périodiques de période inférieure à k. Il s'agit d'un résultat particulièrement

frappant. De surcroît, il n'est pas nécessaire de supposer que la variété ambiante

M soit un espace projectif pour employer la méthode mise en œuvre par Briend

et Duval. Les hypothèses essentielles sont que

(1) M soit projective (ou kâhlérienne)

(2) le degré topologique deg(/) de l'endomorphisme majore strictement

les autres valeurs spectrales de la transformation linéaire

/* : //*(M; R) -A //*(M; R)

obtenue par l'action de / sur l'homologie de M.
Ces deux propriétés sont satisfaites par les endomorphismes de l'espace

projectif et par les endomorphismes (affines) des tores dont la partie linéaire est

une similitude. La question est: existe-t-il d'autres exemples? Nous cherchons

donc en priorité à décrire les endomorphismes qui ne préservent pas de fibration
non triviale.

Nous ne supposerons plus que la variété étudiée est homogène, mais qu'elle
est kâhlérienne et que sa dimension de Kodaira est positive ou nulle (cf. §2).

PROPOSITION 7.1. Soit M une variété kâhlérienne compacte de dimension
n dont la dimension de Kodaira est positive ou nulle. Soit f: M -A M un

endomorphisme dont le degré topologique deg(f) est strictement plus grand
que 1. Si deg(f) n'appartient pas au spectre de f: Hn- \ n-\(M, R) —>

R) alors, après un revêtement étale fini de M, ou bien M est

un tore, ou bien f a un facteur inversible (voir la définition 1.1).

Ce résultat montre que pour trouver de nouveaux endomorphismes redevables

de la méthode Briend-Duval il faut chercher parmi les variétés de dimension

de Kodaira négative. A priori, on peut d'ailleurs se contenter d'étudier
celles qui sont rationnellement connexes (voir [12]).

Démonstration. D'après le théorème 2.2, f est un revêtement étale de M.
Soit k un entier strictement positif pour lequel K$k possède une section non
identiquement nulle. Puisque l'espace des sections holomorphes de K®k est
un C-espace vectoriel de dimension finie, il existe une section Q de K$k et
un nombre complexe non nul a tel que

(31) /*Q dQ.
En particulier, le diviseur des zéros de Q est invariant à la fois par / et par
f~l ; au niveau homologique, ceci se traduit par l'équation
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(32) /[(Q)0] deg(/) [(Q)oJ.

L'hypothèse faite dans l'énoncé montre alors que [(Q)o] est nulle; la forme
£2 ne s'annule donc pas et le fibré en droites Km est un fibré de torsion {K§k
est trivial).

D'après un théorème célèbre de Fedor A. Bogomolov (voir [7], partie I),
la variété M possède un revêtement fini M' qui est le produit d'un tore A

par une variété simplement connexe Q. La projection sur A coïncide avec
le morphisme d'Albanese et détermine donc une fibration f-équivariante. La
variété Q est simplement connexe et sa dimension de Kodaira est nulle, donc

tout endomorphisme de Q est un automorphisme (cf. thm. 2.2); en outre,
le groupe des automorphismes de Q est discret [7]. L'argument donné pour
démontrer la proposition 3.3 montre alors que / agit diagonalement sur le

produit M' A x Q et que la projection de M' sur Q fournit un facteur
inversible de /.

Remarque 7.1. Nous pensons que l'hypothèse reliant le degré de / au

spectre de /* n'est pas essentielle. En effet, supposons que la dimension de

Kodaira de M est nulle, car sinon on peut réduire le problème à l'aide du

théorème 2.1. Si / ne préserve aucune fibration, nous pouvons supposer que
la fibration d'Albanese de M est triviale {cf. §2.3). Dans ce cas, Frédéric

Campana conjecture que le groupe fondamental de M est fini. Le revêtement

universel de M serait alors une variété complexe compacte simplement connexe
dont la dimension de Kodaira est nulle: tous ses endomorphismes sont donc
des automorphismes {cf. les arguments relatifs à Q ci-dessus).

PROPOSITION 7.2. Soit f: M —> M un endomorphisme non inversible d'une
variété kâhlérienne compacte. Supposons que la dimension de Kodaira de M
est positive ou nulle et qu'il existe une classe de cohomologie kâhlérienne

[a] telle que f*[oi] soit proportionnelle à [a]. Il existe alors un revêtement

fini de M qui est un tore.

Démonstration. Notons q le nombre réel positif tel que

J.-P. Serre a montré dans [26] que les valeurs propres de /* sur chaque groupe
de cohomologie HP,P{M;C) sont de module qp. Le degré topologique de /
est égal à qn où n est la dimension de M : nous sommes donc dans le cadre

de la proposition précédente, dont nous poursuivons la démonstration avec les

mêmes notations. Notons au passage que q est strictement plus grand que

(33) f[a] q[a].
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1 car / n'est pas inversible. Soit a un point de la variété d'Albanese A

de M' et Qa la fibre du produit M' A x Q au-dessus de a. Puisque /
agit par automorphisme sur Q, f~l(Qa) est constitué d'exactement qn fibres.

Celles-ci sont toutes homologues à Qa et, M' étant kâhlérienne, la classe

d'homologie [Q] n'est pas nulle. Puisque la valeur propre qf n'apparaît pas

sur les homologies de dimension intermédiaire, ceci montre que Q est réduite

à un point. Autrement dit, M' est un tore.
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