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112 A. PLAGNE

With these results, we know the behaviour of ug at the two endpoints
of the spectrum (cyclic groups and groups of prime exponent). What now
remains to be done is to fill the gap between the upper bound and the lower
bound for general finite Abelian groups.

2. PROOF OF THEOREM 4
Let G be any given finite Abelian group and let 1 < r,s < |G].

2.1 THE LOWER BOUND

If pg(r,s) > r+s—1, the result is immediate (take d = 1). We may thus
assume that

2.1 po(r,s) <r+s—1.

Then, choosing two sets A and B in G with respective cardinalities » and
s, such that | A + B| attains ucs(r,s), we get

| A+ B| = pe(r,s) < | A+ |B| — 1.

We are in a position to apply Kneser’s theorem [9] on the structure of sets
with a small sumset. It follows that there exists a subgroup H of G (namely
the stabilizer of A + B) such that

A+ B|=|A+H|+|B+H|— |H|.

Denoting by (A + H)/H (resp. (B + H)/H) the H-cosets that A (resp. B)
intersects, we obtain

|A+B|:<'A+H' 'B+H 1)|H|

H
> ([r/f1+1s/f1 = 1f

where f denotes the cardinality of H. Since Lagrange’s theorem shows that
f divides |G|, we get

| A+ B| > min([r/d] + [s/d] — 1)d.
d||G]|

From this it follows that, in any case,

ug(r,s) > nlw.ln(fr/d] + [s/d] — 1)d,

which is the desired lower bound.
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2.2 THE UPPER BOUND

Let H be any subgroup of G. Choose Ay and By in G/H with respective
cardinalities [r/|H|| and [s/|H|| and such that
| Ao+ Bo| = we/u([r/IH|], [s/|H[]) -

Now choose A of cardinality r and B of cardinality s in G such that the
image of A (resp. B) by the canonical projection on G/H is included in Ay
(resp. Bp). One has

|A+ B| < pgyu([r/IHI], [s/|HIDIH].

This proves the first lemma we need.

LEMMA 1. For any finite Abelian group G
potr,) < min T/ 1B, [s/HIDIH]

The second useful point is synthesized in the next folkloric lemma.

LEMMA 2. Let G be a finite Abelian group. For any positive integer m,
the following two propositions are equivalent

(1) m divides expG,
(ii) there exists a subgroup H of G such that G/H is isomorphic to Z/mZ.

In the case of a cyclic group K, trivial considerations (take two sets with
consecutive elements), show that, for any u,v < |K]|,
(2.2) pg(r,s) <r+s—1.

Using consecutively Lemma 1, inequality (2.2) and Lemma 2 yields the
following chain of inequalities :

pe(r,s) < }I}lgifcl}uc/ﬁ(ﬁ/IHH» [s/|H|D|H|

% e rg}l}} o Hom([r/1HI, [s/[HDIH]|

< oo min (/I + [s/|H[] - 1) |H

~ Jo/m] g}?es expG(l—r/lHH + [s/|H[] = 1) |H]

G
= min_ (17/16[1 + Tsf/I61] - 1) 1)
" flex o
The change of variable d = |G|/f yields a parameter d subject to the two

restrictions e—lﬂ d and d ] |G| ; this proves the upper bound in Theorem 4.
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