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degree by a kind of geometric complexity (in spirit of Thom) of a smooth
map, making use of a quantitative form of the Thom transversality theorem
instead of Bézout’s theorem. The quantitative transversality can be used
also for counting periodic orbits of a vector field and periodic points of
a transformation preserving an additional structure (volume. symplectic form,
etc.) and it yields the Artin-Mazur estimate for dense sets of such maps.
Unfortunately, the detailed proof (at least the one I know of) is more
lengthy than the algebraic one, and I shall treat the subject somewhere
else.

REMARK. The quantitative transversality theory has been developed by
Y. Yomdin (see p. 124 in [5] for a brief introduction) but does not suffice, as
it stands, for the diff-version of the Artin-Mazur theorem. In fact., one needs
here an adequate notion of genericity (compare remark on p.31 in [5]) as is
shown in [1’] for smooth maps. I have never returned to this issue and can
only conjecture the extension (and sharpening) of the corresponding results in
[1'] to structure preserving maps and/or vector fields.

§5. QUASICONFORMAL MAPS

For a smooth map f: X — Y from one oriented n-dimensional Riemannian
manifold into another, we denote by D.f its differential at x, by |D.f|
the norm of the differential, by detD,f its Jacobian, and by A\ the ratio
ID«f|"/ det Dy f called the conformal dilation at x € X. A map is called
A-quasiconformal if, for almost all x, the differential D,f exists, detD,f
does not vanish, and Af < A. A quasiconformal map must have locally
positive degree. If n = 1, each locally diffeomorphic map is conformal (i.e.
1-quasiconformal).

When n = 2, conformal maps are complex analytic and for n > 2

~

all conformal maps are locally diffeomorphic. In particular, when n > 2,
every non-injective conformal endomorphism is conjugate to a homothety of
a flat Riemannian manifold. When A > 1, there are (not locally injective)
A-quasiconformal maps in all dimensions 7 > 1. They are locally homeo-
morphic outside a codimension 2 branching set. At that set, they are never

(n > 2) smooth.
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GENERALISATION OF (0.1)

If f is a A-quasiconformal endomorphism of a closed 7n-dimensional
manifold, then

(5.0 h(f) <logdeg f + n log \.
(Compare with the standard estimate A(f) < sup,cy7 log||Dif||.)

Proof. As before, we estimate the density and volume of the iterated
graph and we need an analogue of (2.0) only for the Euclidean space. The
only new ingredient here is the following obvious fact:

Consider an n-dimensional V C (R")* with all projections V — R”
\-quasiconformal and having volumes not greater than g > 0. (The volume
of a map is the integral of its Jacobian.) Then

(5.1) Vol V < K" 1.

Combining (5.1) with the isoperimetric inequality applied to the projection
V — R" realizing p we conclude that

(5.2) Vol V < CK' 1 AT | C=Ch),

where A denotes the (n — 1)-dimensional volume of the boundary 0V. (In
other words, graphs of quasiconformal maps are quasiminimal.)
Now, using the same notation as in Section 2, we conclude that

n

(5.3) V. < CEMI AL

and combining (5.3) with (2.2) and (2.3), we have:
(5.4) V. > const, K"y N1,

Combining (5.4) and (1.1) and observing that projections of the iterated graph
(I')x of a A-quasiconformal f are X¢-quasiconformal we obtain :

h(f) <lovIy+(n—1)logA.
To complete the proof, we apply (5.1) again and get

lov Iy <logdeg f+1logA.
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