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degree by a kind of geometric complexity (in spirit of Thorn) of a smooth

map, making use of a quantitative form of the Thorn transversality theorem

instead of Bézout's theorem. The quantitative transversality can be used

also for counting periodic orbits of a vector field and periodic points of
a transformation preserving an additional structure (volume, symplectic form,
etc.) and it yields the Artin-Mazur estimate for dense sets of such maps.

Unfortunately, the detailed proof (at least the one I know of) is more

lengthy than the algebraic one, and I shall treat the subject somewhere

else.

Remark. The quantitative transversality theory has been developed by
Y. Yomdin (see p. 124 in [57] for a brief introduction) but does not suffice, as

it stands, for the diff-version of the Artin-Mazur theorem. In fact, one needs

here an adequate notion of genericity (compare remark on p. 31 in [57]) as is
shown in [!'] for smooth maps. I have never returned to this issue and can

only conjecture the extension (and sharpening) of the corresponding results in
[F] to structure preserving maps and/or vector fields.

§ 5. Quasiconformal maps

For a smooth map /: X —» Y from one oriented n -dimensional Riemannian
manifold into another, we denote by Dxf its differential at x, by ||Z>T/||
the norm of the differential, by detDr/ its Jacobian, and by Xf the ratio
IIA-/H7detA7 called the conformai dilation at x G X. A map is called
A-quasiconformal if, for almost all x, the differential Dxf exists, det Dxf
does not vanish, and Aj < A. A quasiconformal map must have locally
positive degree. If n — 1, each locally diffeomorphic map is conformai (i.e.
1 -quasiconformal).

When n 2, conformai maps are complex analytic and for n > 2
all conformai maps are locally diffeomorphic. In particular, when n > 2.
every non-injective conformai endomorphism is conjugate to a homothety of
a flat Riemannian manifold. When A > 1, there are (not locally injective)
A-quasiconformal maps in all dimensions n > J They are locally homeo-
morphic outside a codimension 2 branching set. At that set. they are never
(n > 2) smooth.
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Generalisation of (0.1)

If / is a À -quasiconformal endomorphism of a closed -dimensional

manifold, then

(5.0) h(f) < log deg / + n log A.

(Compare with the standard estimate h(f) < supxeXn log IIA/II •)

Proof. As before, we estimate the density and volume of the iterated

graph and we need an analogue of (2.0) only for the Euclidean space. The

only new ingredient here is the following obvious fact:
Consider an n -dimensional V C (Rn)k with all projections V -A Rn

À-quasiconformal and having volumes not greater than ß > 0. (The volume

of a map is the integral of its Jacobian.) Then

(5.1) Vol V< k"+lXfi.

Combining (5.1) with the isoperimetric inequality applied to the projection
V^Rn realizing ß we conclude that

(5.2) Vol V < œ+l\, C C(n),

where A denotes the (n — 1)-dimensional volume of the boundary dV. (In
other words, graphs of quasiconformal maps are quasiminimal.)

Now, using the same notation as in Section 2, we conclude that

(5.3) ve < cr+1XAp

and combining (5.3) with (2.2) and (2.3), we have:

(5.4) Ve > constniTcoristant^enA1_n

Combining (5.4) and (1.1) and observing that projections of the iterated graph

(Tf)k of a A-quasiconformal / are Xk -quasiconformal we obtain:

Kf) < l°v Tf + {n— 1) log A

To complete the proof, we apply (5.1) again and get

lov I) < log deg / + log A
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