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CARACTERISATION GEOMETRIQUE DES SOLUTIONS DE MINIMAX
POUR L’EQUATION DE HAMILTON-JACOBI

par Gianmarco CAPITANIO *)

ABSTRACT. The minimax solution is a weak solution of a Cauchy problem for the
Hamilton-Jacobi equation, constructed from a generating family (quadratic at infinity)
of its geometric solution. In this paper we give a new construction of the minimax in
terms of Morse theory, and we show its stability by small perturbations of the generating
family. Then we show that the max-min solution coincides with the minimax solution.
Finally, we consider the wave front corresponding to the geometric solution as the
graph of a multi-valued solution of the Cauchy problem, and we give a geometric
criterion to find the graph of the minimax.

INTRODUCTION

En 1991 Marc Chaperon a proposé, dans [Cha], une méthode géométrique
pour construire des solutions faibles du probleme de Cauchy pour I’équation
de Hamilton-Jacobi :

(PC) Ou(t,q) + H(t,q,0,u(t,q)) =0, pourtout >0, g€ Q,
M(Oa Q) - MO(Q)a pour tout q = Q7

de hamiltonien H et donnée initiale uy sur une variété fermée Q.

La méthode classique des caractéristiques conduit, d’aprés une idée
de Maslov, a considérer comme solution généralisée de (PC) une sous-
vari€té lagrangienne du fibré cotangent de 1’espace-temps R x Q, la solution
géométrique.

La “projection” de la solution géométrique dans I’espace des jets d’ordre 0
sur Q est, en général, le graphe d’une fonction multivaluée. La méthode de
minimax permet de déduire une “vraie” fonction a partir de cette solution multi-
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valuée. L'outil principal dans cette construction sont les familles génératrices
quadratiques a.1’infini des sous-variétés lagrangiennes. Le théoréme d’existence
et d’unicité de ces familles permet d’associer a chaque point de 1’espace-temps
une fonction, quadratique a I’infini dans les parametres (la famille génératrice
évaluée en ce point), dont on consideére la valeur critique de minimax. La
fonction ainsi définie s’avere étre une solution faible lipschitzienne de (PC),
la solution de minimax.

Ce travail est divisé en trois parties.

Dans la premiére partie on présente une nouvelle construction de la valeur
critique de minimax d’une fonction quadratique a I’infini, basée sur la théorie
de Morse. Cette construction permet de caractériser de maniere simple le
minimax d’une fonction générique parmi les fonctions quadratiques a I’infini
en termes du complexe de Morse associé. Le résultat principal de cette partie
est la stabilité de la valeur critique de minimax par petites déformations de
la fonction. - |

Dans la deuxieme partie on rappelle la construction de la solution
géométrique de (PC) et on démontre que toute solution géométrique est

1sotope, pour temps finis, a la section nulle du fibré cotangent; elle admet .

donc une unique famille génératrice quadratique a I’'infin1 S(z, g; £). La solution
de minimax est, en tout point fixé (#y > 0, qp) de 1’espace-temps, le minimax
de la fonction génératrice quadratique a I’infini, min max{¢ — S(t, qo;€)}. La
stabilité par petites déformations donne une preuve nouvelle (géométrique) de
la continuité de cette solution. On montre aussi que la solution de max-min,
définie de maniere analogue, coincide avec celle de minimax.

Dans la troisiéme partie on montre comment réduire le probléeme de
déterminer la solution de minimax associée a un front d’onde (graphe d’une
fonction multivaluée) de dimension quelconque au cas d’un tel front de
dimension 1. Un théoreme récent de Chekanov et Pushkar ([Ch2], [C-P])
permet alors d’établir un critere géométrique purement combinatoire pour
déterminer le graphe de la solution de minimax directement sur le front d’onde.
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