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CARACTÉRISATION GÉOMÉTRIQUE DES SOLUTIONS DE MINIMAX
POUR L'ÉQUATION DE HAMILTON-JACOBI

par Gianmarco Capitanio*)

Abstract. The minimax solution is a weak solution of a Cauchy problem for the
Hamilton-Jacobi equation, constructed from a generating family (quadratic at infinity)
of its geometric solution. In this paper we give a new construction of the minimax in
terms of Morse theory, and we show its stability by small perturbations of the generating
family. Then we show that the max-min solution coincides with the minimax solution.
Finally, we consider the wave front corresponding to the geometric solution as the
graph of a multi-valued solution of the Cauchy problem, and we give a geometric
criterion to find the graph of the minimax.

Introduction

En 1991 Marc Chaperon a proposé, dans [Cha], une méthode géométrique

pour construire des solutions faibles du problème de Cauchy pour l'équation
de Hamilton-Jacobi :

Çpc^
f dtu(t, q) + H(t, q, dqu(t, q)) 0 pour tout f > 0, q eQ,
[w(0, q) uo(q), pour tout q G ß

de hamiltonien H et donnée initiale u0 sur une variété fermée Q.
La méthode classique des caractéristiques conduit, d'après une idée

de Maslov, à considérer comme solution généralisée de (PC) une sous-
variété lagrangienne du fibré cotangent de l'espace-temps R x Q, la solution
géométrique.

La "projection" de la solution géométrique dans l'espace des jets d'ordre 0

sur Q est, en général, le graphe d'une fonction multivaluée. La méthode de
minimax permet de déduire une "vraie" fonction à partir de cette solution multi-

*) Recherche soutenue par l'Istituto Nazionale di Alta Matematica "F. Severi".
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valuée. L'outil principal dans cette construction sont les familles génératrices

quadratiques à l'infini des sous-variétés lagrangiennes. Le théorème d'existence
et d'unicité de ces familles permet d'associer à chaque point de l'espace-temps
une fonction, quadratique à l'infini dans les paramètres (la famille génératrice
évaluée en ce point), dont on considère la valeur critique de minimax. La
fonction ainsi définie s'avère être une solution faible lipschitzienne de (PC),
la solution de minimax.

Ce travail est divisé en trois parties.
Dans la première partie on présente une nouvelle construction de la valeur

critique de minimax d'une fonction quadratique à l'infini, basée sur la théorie
de Morse. Cette construction permet de caractériser de manière simple le

minimax d'une fonction générique parmi les fonctions quadratiques à l'infini
en termes du complexe de Morse associé. Le résultat principal de cette partie
est la stabilité de la valeur critique de minimax par petites déformations de

la fonction.
Dans la deuxième partie on rappelle la construction de la solution

géométrique de (PC) et on démontre que toute solution géométrique est

isotope, pour temps finis, à la section nulle du fibré cotangent; elle admet

donc une unique famille génératrice quadratique à l'infini S(t, q\ £). La solution
de minimax est, en tout point fixé (to > 0,go) de l'espace-temps, le minimax
de la fonction génératrice quadratique à l'infini, minmax{£ t-A S(to, qo\0} • La
stabilité par petites déformations donne une preuve nouvelle (géométrique) de

la continuité de cette solution. On montre aussi que la solution de max-min,
définie de manière analogue, coïncide avec celle de minimax.

Dans la troisième partie on montre comment réduire le problème de

déterminer la solution de minimax associée à un front d'onde (graphe d'une
fonction multivaluée) de dimension quelconque au cas d'un tel front de

dimension 1. Un théorème récent de Chekanov et Pushkar ([Ch2], [C-P])

permet alors d'établir un critère géométrique purement combinatoire pour
déterminer le graphe de la solution de minimax directement sur le front d'onde.
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